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ABSTRACT  

Part I.  It is important to understand the factors that influence binding.  Rigid 

molecular receptors have been widely studied, with some of these receptors being able to 

form stable complexes in competitive solvents such as aqueous DMSO.  The scope of 

my research is to study both the binding of ferrocene derivatives to carboxylates in 

competitive solvents, and the release of these carboxylates when cucurbit[7]uril is added 

to the system with the aim of identifying more tightly binding hosts to carboxylates in 

neat water.   

In Chapter 1, pincher cationic ferrocene hosts for carboxylate ion guests were 

synthesized and the binding constants were determined by NMR or UV-vis titrations.  

These (di)cationic hosts formed tight complexes with benzoate or acetate even in 

competitive aqueous DMSO solvent.  A bis(acylguanidinium) ferrocene dication 

achieved a remarkable Ka of ~ 106 M-1 to acetate in 9:1 DMSO:H2O and a Ka of 850 M-1 

in pure D2O, one of the highest association constants known for a mono-carboxylate 

complex exploiting only electrostatic interactions in pure water.  Density functional 

theory (DFT) computations of the binding enthalpy were in good agreement with the 

experimentally determined association constants.  

 In Chapter 2, association constants of a bis(acylguanidinium) ferrocene dication 

to various (di)carboxylates in water were determined through UV-vis titrations.  

Association constant values greater than 104 M-1 were determined for both phthalate and 

maleate carboxylates to the bis(acylguanidinium) ferrocene salt in pure water.  DFT 
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binding enthalpy computations of the rigid carboxylates geometrically complementary to 

the dication agree well with the experimentally determined association constants.  Catch 

and release competitive binding experiments were done by NMR for the cation-

carboxylate ion pair complexes with CB[7], showing dissociation of the ion pair 

complex upon addition of CB[7]. 

 Part II.  Heterolytic bond scission is a staple of chemical reactions.  While 

qualitative and quantitative models exist for understanding the thermal heterolysis of 

carbon—leaving group (C-LG) bonds, no general models connect structure to reactivity 

for heterolysis in the excited state.   

Time-Dependent Density Functional Theory (TD-DFT) excited-state energy 

calculations and Complete Active Space Self-Consistent Field (CASSCF) minimum 

energy crossing (conical intersection) searches were performed to investigate 

representative systems that undergo photoheterolysis to generate carbocations.  Certain 

classes of unstabilized cations are found to have structurally-nearby, low-energy conical 

intersections, whereas stabilized cations are found to have high-energy, unfavorable 

conical intersections.  The former systems are often favored from photochemical 

heterolysis.  These results suggest that the frequent inversion of the substrate preferences 

for non-adiabatic photoheterolysis reactions arises from switching from transition-state 

control in thermal heterolysis reactions to conical intersection control for photochemical 

heterolysis reactions.  The elevated ground-state surfaces resulting from generating 

unstabilized or destabilized cations, in conjunction with stabilized excited-state surfaces, 

can lead to productive conical intersections along the heterolysis reaction coordinate.  
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 From the TD-DFT excited-state calculations, we were able to notice trends and 

predict if molecules have the potential for a productive conical intersection.  To test this 

experimentally, BODIPY dyes that were shown to have small energy gaps between the 

ground state and excited state surfaces were synthesized.  These dyes were irradiated 

with a xenon lamp, and the growth of the acetic acid leaving group peak was monitored 

by NMR over time.     
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INTRODUCTION FOR PART I 

 
“Supramolecular Chemistry aims at developing highly complex chemical systems from 

components interacting by non-covalent intermolecular forces.” 1  

– Jean-Marie Lehn 

 

INTRODUCTION TO NON-COVALENT INTERACTIONS 

Supramolecular chemistry.  Since the development of the supramolecular 

chemistry field, many self-assembled host-guest systems have been reported, ranging 

from simple dimers to complex nanotubes.2, 3  These supramolecular structures rely on 

non-covalent interactions for self-assembly which can include hydrogen bonding, 

electrostatic, ion-dipole, and hydrophobic interactions.2, 4  As a mark of this field’s 

impact, in 1987 Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen were jointly 

awarded the Nobel Prize in chemistry ‘for their development and use of molecules with 

structure-specific interactions of high selectivity.’5-7  Pedersen is best known for 

synthesizing crown ethers while working for DuPont.6, 8, 9  Lehn and Cram developed 

cryptands, hemicarcerands, spherands etc. as expansions of the crown ether work by 

Pedersen.5, 6, 10-12  

 The strength of non-covalent interactions depends significantly on external 

factors such as solvent polarity, pH, and temperature, and these factors can give rise to 

external control of self-assembly.2  Non-covalent interactions are thermodynamically 

controlled and reversible, which is exploited in the recent development of self-healing 

materials.2 This reversibility of non-covalent bonds, while attractive for self-healing 
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materials, is also the main weakness of artificial self-assembled structures, especially 

those relying heavily on hydrogen bonding interactions, because protic solvents can 

dramatically decrease the strength of hydrogen bonds.2, 7 

Hydrogen-bonded assemblies.  Hydrogen bonding is a Coulombic interaction 

between a polar donor bond (Dδ¯ - H 
δ+) and an acceptor atom (:Aδ¯).3,13  The majority of 

self-assembled structures studied rely on hydrogen bonds, which are attractive due to 

their complementarity and directionality.2,4,14  For example, in 1993 Rebek, et al, was 

able to make a synthetic ‘tennis ball’ dimer that formed through self-complementary 

hydrogen bonds in chloroform.15  Recent focus in supramolecular chemistry, however, 

has been on developing receptors that can achieve self-assembly in water, which is 

important for the recognition of biologically important guests.4,14  While hydrogen bonds 

persist in aprotic or nonpolar solvents, competitive solvation in polar and protic solvents, 

such as water, leads to dissociation of most assemblies.2,4   

In 1987, Maguire and co-workers intended to design receptors that recognized 

uric acid (Figure 1A, B).16 The lack of solubility of the uric acid derivatives in neutral 

organic solvents precluded binding studies, so the authors changed their guest to a 

pyrazolo-[3,4-d]pyrimidone system.16  It was discovered that in 1:1 (v/v) 

dichloromethane/ toluene mixtures, their receptor bound the pyrazolo-[3,4-d]pyrimidone 

derivative with Ka = 9.1 x 105 M-1.16  

In 1991, Hamilton’s group efficiently synthesized a range of barbiturate receptors 

in only two steps (Figure 1C).17  These receptors showed relatively strong binding to 

barbitals through hydrogen bond interactions in non-polar solvents.17  Fluorescence 
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binding titrations in dichloromethane indicated an association between the barbital and 

receptor as high as 2.5 x 105 M-1.17  

 

Figure 1. Maguire (A, B) and Hamilton’s (C) hydrogen-bond driven receptors 

 

The hydrogen bonding strength of the receptors in Figure 1 can be attributed to the 

(non)polarity of the solvents, the preorganization of the host and guest, and the 

complementary binding sites of the host and guest. 

In 2005, Zimmerman et al wanted to study hydrogen-bonded networks in more 

polar solvents.  They introduced a ureido-naphthyridine dimer with eight self-

complementary donor and acceptor hydrogen bonding sites (Figure 2).18    

 

Figure 2. Zimmerman’s ureido-naphthyridine dimer 
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It was found that this ureido-naphthyridine dimer had an association constant as 

high as 4.5 x 105 M-1 in 10% DMSO/chloroform, but that the association constant 

dropped to only 40 M-1 when the amount of DMSO was raised to 20%.18  In neat DMSO, 

or in protic solvents like water or methanol, no dimerization was observed.18  Therefore, 

in order to achieve self-assembly in polar solvents like water, additional non-covalent 

interactions, such as electrostatic interactions, must be exploited.2   

Electrostatic interactions.  Electrostatic interactions are Coulombic attractions 

or repulsions between charges or partial charges.3  There are many types of electrostatic 

interactions including ion pairs, salt bridges, and ion-dipole interactions.3  Electrostatic 

interactions between two charged species, or ion pairs, are more stable than hydrogen 

bonds, but like hydrogen bonds, they are also solvent-dependent.2  While ion pairs persist 

in non-polar solvents, they are much weaker in polar or aqueous solvents due to the 

dielectric of the solvent that shields the charges from one another.  Because ion pairs lack 

directionality, they are usually paired with hydrogen bonds to achieve substrate 

specificity.3  Simple point charge ion pair interactions are very weak, even when they are 

paired with hydrogen bonds.3   

In 2000, Schmuck and coworkers studied the binding interactions between 

various guanidinium-bearing receptors.19  There was no observed complexation between 

the N-acetyl alanyl carboxylate 1 and guanidinium hydrochloride 2 in 60% DMSO/ 

water solutions (Figure 3).19   
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Figure 3. Carboxylate 1 and guanidinium-bearing cations studied by Schmuck in 

competitive solvent.  

 

Remarkably, however, with the recruitment of just one additional hydrogen bond, 

the guanidiniocarbonyl pyrrole 3 was able to bind to the N-acetyl alanyl carboxylate 1 

under the same solvent conditions with an association constant of 130 M-1.19  It should be 

noted that the carbonyl next to the guanidine makes the guanidine hydrogens more acidic 

(increased δ+), which helps favor hydrogen-bond formation.2  Compound 4, which was 

able to form four hydrogen bonds with the carboxylate, had an association constant of 

1610 M-1.19  

In 1997, Anslyn’s group synthesized a receptor that his group used as an 

indicator-displacement assay with a 5-carboxyfluorescein indicator to bind ATP, citrate, 

and numerous other tri-carboxylates in buffered water (Figure 4).20  According to 

Anslyn, this tri-cationic “pinwheel” receptor was a by-product of a reaction in which the 

group was trying to design a phosphate-ester hydrolysis catalyst.20, 21  While drinking a 

can of Fresca, which contains citrate, Anslyn decided to use this tri-cationic byproduct to 

try to selectively bind citrate.20   
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Figure 4.  Anslyn’s citrate and ATP receptor  

 

By NMR binding titrations, Anslyn et al found that the pinwheel receptor was 

able to bind citrate as high as 6.9 x 103 M-1 in pH 7.4 buffered D2O,22 and was able to 
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Figure 5. Schmuck’s molecular flytrap receptor  
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decreasing the amount of water molecules that must reorient themselves is greatly 

favored.3  Therefore, overall it is more entropically favorable for the hydrocarbons to 

aggregate rather than not.3   

Hydrophobic properties can be exploited for host-guest chemistry.  For example, 

cyclodextrins, cucurbit[n]urils, and cyclophanes all have a hydrophobic cavity.  

Cyclodextrins (CD) are cyclic oligosaccharides made up of 6, 7, or 8 glucose units (α, β, 

γ respectfully).26  The hydroxyl groups of cyclodextrins are easily modified, which 

allows for the change of the depth of the CD cavity as well as solubility properties 

(Figure 6).27 The ability to modify the CD cavity depth and its good solubility in water 

make CDs attractive potential hosts for drug delivery.     

 

Figure 6. β-Cyclodextrin 
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been shown to have pharmaceutical potential for the treatment of cancer, cystic fibrosis, 

Alzheimer’s disease, and Parkinson’s disease.27  However, due to its hydrophobic poly-

phenol structure, it is not very soluble in aqueous solvents, making direct oral 

bioavailability very low.27  Qi’s group showed that the modified CD and curcumin could 

form a complex in water at many pH ranges.27  They also found that due to the 

solubilizing ability of the CD, after oral administration in rats the bioavailability of the 

curcumin significantly improved.27 

 

Figure 7. Qi’s modified cyclodextrin studied with curcumin 
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adamantanes in water (Figure 8).29  They found that β-cyclodextrin formed a complex 

with the adamantylammonium with an association of 8 x 103 M-1 in water.29  A similar 

study of the complex between the same substituted adamantine and cucurbit[7]uril 

(CB[7]) in water showed that a complex with an association of 4.2 x 1012 M-1 was 

formed.30 

 

Figure 8. Adamantylammonium studied by Laufer 

 

Cucurbit[n]urils, which are highly symmetrical, rigid cyclic oligomers of 

bis(methylene)-bridged glycourils, have also been found to form stable complexes with 

methylviologen (Ka > 106 M-1) and many other ammonium compounds in water (Figure 

9).31-33  Cucurbit[7]uril will be discussed in detail later in the Cyclodextrin and 

Cucurbit[7]uril as Ferrocene Hosts section. 

 

Figure 9. Cucurbit[7]uril  

 

In 1984, Jean-Marie Lehn’s group synthesized a speleand, which is a type of 

cavitand and cyclophane hybrid containing both ether and aromatic groups (Figure 

H3N

N

N

N N

N N N

N N

N

NN

NN

OO O O

OOOO

N NN

NN

N

N N

O

O O

O

NN

NN

O

O



www.manaraa.com

 
 

11	
  

10).3,34 They found that this speleand was able to bind substituted ammonium ions, and 

that the complexes formed were more stable than those formed with 18-crown-6.34  

Methylviologen formed a strong complex with the speleand, and it was determined to 

have a binding constant greater than 106 M-1 in water.34 

   

Figure 10. Speleand receptor and methylviologen studied by Lehn  
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host and guest should have complementary shapes, and (iii) the host and guest should be 

preorganized for binding.4 

 

Complementarity, preorganization, and induced-fit.  In 1894, Emil Fischer 

described a lock-and-key model for enzyme recognition.35 The concepts of 

complementarity and preorganization are similar to the lock-and-key model, which 

indicates that the high specificity of an enzyme-substrate complex is due to the enzyme 

being rigid and the substrate being complementary to the enzyme binding pocket (Figure 

11).3, 35  For supramolecular chemistry, Cram has said that “the more highly hosts and 

guests are organized for binding… the more stable will be their complexes.”35, 36 

 

Figure 11.  Lock-and-key (top) versus induced fit (bottom) 

 

Umezawa et al synthesized receptors that were preorganized to bind specific 

guests (Figure 12).37  Their hosts were based on the thiourea moiety connected to a 

xanthene spacer.  The rigid backbone of their receptor, paired with directional hydrogen 

bonds proved to be an excellent design for the binding of phosphate.37   
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Figure 12.  Umezawa’s xanthene thiourea receptor 

 

The xanthene thiourea receptor was bound to chloride, phosphate, and acetate in neat 

DMSO.  While chloride only bound with an association of 1 x 103 M-1, phosphate had a 

Ka of nearly 2 x 105 M-1, and the association to acetate was too large to determine by 

NMR titrations.37  It was determined that these large associations to phosphate and 

acetate were due to the complementarity and preorganization of the host.     

Unlike Umezawa’s receptor, many synthetic hosts are not completely 

preorganized for binding and may require conformational changes in order to become 

complementary to their guest.  This is similar to the induced fit model proposed by 

Koshland, which states that “the substrate may cause an appreciable change in… the 

active site.”35  Figure 11 shows both the lock-and-key and the induced fit models 

proposed by Fischer and Koshland.  In the event that a host or guest is not preorganized 

for binding, energetic costs, both entropic and enthalpic, associated with the molecule 

restricting itself to a specific conformation reduces the overall binding association.35, 38  

Therefore, rigid, preorganized hosts, like cucurbit[n]urils, have very strong binding 

associations with their guests, provided that the guests are the appropriate size to fit into 

the cucurbit[n]uril binding cavity.  

O
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Examples of induced fit anion binding receptors mentioned previously are 

Anslyn’s ‘pinwheel’ (Figure 4) and Schmuck’s ‘molecular flytrap’ (Figure 5) citrate 

receptors.  These receptors had a flexible connectivity to a benzene ring and rigid arms 

that were able to clasp onto the citrate, much like a Venus flytrap.  Both of these 

receptors were able to bind citrate with an association up to 105 M-1 in water because 

they exploited many types of non-covalent interactions, and they had a host that was 

preorganized to bind citrate.20, 23  Most artificial receptors use many different types of 

non-covalent interactions to achieve stable self-assembly, and most receptors are 

designed to be complementary and preorganized to bind a specific guest.   

 

ARTIFICIAL RECEPTOR DESIGN 

Introduction.  In order to form stable aggregates, it is often the case that many 

non-covalent forces must be combined.  These non-covalent interactions must contain a 

directional aspect in order to form defined structures.14  In water, multiple interactions 

are often combined in order to form stable aggregates.  In supramolecular chemistry, 

combining multiple (weak) interactions to form stable aggregates is referred to as the 

Gulliver principle,2,14 referring to the book Gulliver’s Travels by Jonathan Swift, wherein 

the Lilliputians were able to tie Gulliver to the floor with a large number of weak ropes.39  

In chemistry, many combined weak interactions can lead to strong aggregates.  To 

understand just how important these weak interactions are to complexation, Boger et al 

synthesized different peptide substrate analogues to bind to vancomycin with specifically 
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altered binding sites,40 and  Schmuck’ group performed knock-out analogue studies on 

guanidiniocarbonyl pyrroles.41 

Non-covalent interactions in medicine.  Gram-positive bacteria, which get their 

name from the ability for stains to adhere to their cell walls, are common causes of 

infections in hospitalized patients.42, 43  Over the last decade, there has been a large 

increase in antibiotic resistance to gram-positive bacteria.  Methicillin-resistant 

Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) have 

become great concerns.43  As of 2006, sixty percent of the staph infections in the US 

were caused by MRSA.43  

Unfortunately, antibiotic resistance is a recurring theme in medicine.  In the early 

1940’s, virtually all S aureus strains were susceptible to penicillin, but by 1944 there 

were already reports of penicillin resistance.43  Penicillin resistance occurred due to the 

acquisition of genes that encode penicillinase enzymes, which are drug-inactivating 

enzymes.43  Methicillin, which is a penicillinase-resistant variant of penicillin was 

introduced in 1959.43  By 1961, there were already reports of methicillin resistance in 

bacteria.43  To cope with the methicillin resistance, vancomycin was developed.  

Vancomycin is a last resort antibiotic for the treatment of MRSA that binds to a 

specific N-Acyl-D-Ala-D-Ala sequence that is found on the surface of gram-positive 

bacteria cell walls.7,44  When vancomycin binds to the peptide sequence, it sterically 

blocks the enzyme needed for the bacteria cell wall maturation.40  With more frequent 

use of antibiotics, vancomycin-resistant gram-positive bacteria have emerged.  The 
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resistant gram-positive bacteria have N-Acyl-D-Ala-D-Lac peptidoglycan termini 

(Figure 13).45, 46   

 

Figure 13.  Vancomycin bound to peptide sequence of bacteria (A) and vancomycin 

bound to resistant strain of bacteria (B)  

 

Replacement of the D-Ala by D-Lac renders the antibiotic ineffective against the 

bacteria, due to the unfavorable dipole-dipole interaction between the vancomycin 

carbonyl and the lactic acid ester.7,40  This unfavorable interaction is highlighted in red in 

Figure 13. 

To understand just how the change in peptide sequence alters the binding affinity 

of vancomycin to the bacteria, Boger et al synthesized the bacteria peptide sequence of 

interest and systematically altered the Ala residue (Figure 14).40  Then they looked at the 

binding affinity of these altered residues to vancomycin and found that changing the 

amide NH to a CH2 resulted in a 10-fold decrease in complex stability.40  Changing the 

amide NH to an O resulted in a 1000-fold decrease in complex stability.40 
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Figure 14.  Peptide sequences studied by Boger 

 

This is a fascinating example of the importance of pre-organization in 

supramolecular chemistry.  Even a subtle change in one structure can have huge effects 

on the complex stability.  Intrigued by Boger’s studies, Schmuck decided to make 

artificial receptors and computationally test “knock-out” analogues to determine the 

importance of the various non-covalent interactions and their interplay.41 

Schmuck’s “knock-out” analogues.  To understand the importance of individual 

non-covalent interactions, Schmuck et al experimentally and computationally studied 

different guanidiniocarbonyl pyrrole derivatives (Figure 15).41  Compounds 1 and 2 were 

synthesized and their binding constants were determined (Figure 15).47-49  In pure 

DMSO, compound 1 had a Ka > 104 M-1.  In pure water, 1 still formed stable complexes 

with an association constant of 170 M-1.41  Compound 2 was able to dimerize in 

chloroform with an association greater than 104 M-1, but when even 5% DMSO was 

added, there was disruption of the dimers due to competitive solvation.41  From the 

experimental data, it could not be determined the exact reason behind the disparity in 

complex stability, so Schmuck proceeded with the computational “knock-out” studies 

where he systematically knocked out non-covalent binding interactions to determine the 

destabilization of losing these interactions.  Geometry optimizations were computed at 
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the BLYP/TZVPP level of theory, and solvent calculations were performed with 

COSMO.41  The highlighted areas in red in Figure 15 indicate the areas in the complexes 

where non-covalent interactions have been knocked out.   

 

Figure 15. Schmuck’s “knock-out” analogues studied computationally 

 

Complexes 3a and 3b, which included two different rotamers of the same compound, 

have replaced a guanidine NH2 with a methylene group.  Complex 4 has replaced an 

amide NH with a methylene group.  Complexes 5 and 6 have replaced the pyrrole NH 

with methylene and oxygen, respectively.  Due to tautomerization and conformational 

instability, compounds 3a-6 were not studied experimentally.41   

Computed dissociation energies of the dimers going to two zwitterionic 

monomers showed the following trend: ΔE 3b > 1 > 3a ~ 5 > 4 > 6 > 2.  The 

dimerization of complex 3b was calculated to be the most energetically favorable, which 

was surprising to Schmuck, since 1 had an additional internal hydrogen bond, making it 

more rigid and therefore better pre-organized for binding.  These simple models show the 

difficulty in predicting the stability of complexes.  Schmuck was able to conclude that 
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four interactions seem to be important: (i) charge interactions with ionic hydrogen 

binding networks are more stable than simple point charges (ii) additional hydrogen 

bonds are good, but ionic ones are better, (iii) solvation affects hydrogen bonds 

differently depending on their accessibility, and (iv) secondary electrostatic interactions 

help stability.41  The difficulties that Schmuck had in predicting complex stability is not 

limited to his dimers, but to artificial receptors in general, in which both the host and the 

guest need to be designed to have an optimum number of non-covalent binding 

interactions.    

Guanidinium-oxoanion receptors.  Schmuck’s guanidiniocarbonyl pyrrole and 

many other artificial receptors have one moiety in common – guanidinium.  The 

guanidinium group is a common structural motif found in nature to coordinate to many 

types of anions, it is found in the side chain of arginine, and it can form strong ion-pairs 

with oxoanions (carboxylates and phosphates) found in enzymes.50  The guanidinium 

moiety is attractive for artificial receptors and molecular recognition because it is rigid, 

planar, has directional hydrogens, and has a high pKa of 12-13, which ensures 

protonation over a wide pH range.50, 51  

 Artificial receptors already mentioned that bear the guanidinium moiety include 

Schmuck’s guanidiniocarbonyl pyrrole (Figures 3 and 15), Schmuck’s ‘molecular 

flytrap’ (Figure 5), and Anslyn’s ‘pinwheel’ (Figure 4), but there are many other 

receptors that utilize the guanidinium moiety.  In 1992, Hamilton et al developed a bis-

acylguanidinium benzene that was able to bind phosphodiesters in acetonitrile (Figure 

16A).52-54 Proton and phosphorous NMR titrations indicated that Hamilton’s receptor 
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bound tetrabutylammonium diphenylphosphate with a Ka = 4.6 x 104 M-1.54  In the same 

year, Anslyn’s group developed a bis-guanidinium cleft that was also able to bind 

phosphodiesters (Figure 16B).55  A series of investigations were carried out in aqueous 

DMSO, which indicated that even in competitive solvents (2:1 DMSO-d6:D2O), Anslyn’s 

receptor was able to form complexes with dibenzyl phosphate with an association of 7 x 

102 M-1.55 

 

Figure 16.  Hamilton (A) and Anslyn’s (B) guanidinium-based receptors 

 

Over the years, Hamilton’s group continued to design artificial receptors based on 

his original design shown in Figure 16A, with the ultimate goal of forming stable 

complexes in water.  In 2001, they designed bis-guanidinium receptors that bound 

dicarboxylates in aqueous methanol (Figure 17).56  NMR titration experiments in 

different ratios of CD3OD:D2O were done with receptors A and B with both glutarate 

and 5-nitroisophthalate as guests.56  

 

 Figure 17.  Hamilton’s bis-guanidinium receptors, glutarate, and 5-nitroisophthalate 
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Receptor B showed stronger complexation than receptor A with glutarate and 5-

nitroisophthalate in all ratios of aqueous methanol solutions tested, which indicate the 

importance of designing a host that is geometrically matched to its substrate.56  Both 

receptors bound the rigid 5-nitroisophthalate with a higher association than the flexible 

glutarate, which indicates the importance of preorganization.  Even in 75% D2O, receptor 

B was able to bind 5-nitroisophthalate with an association of 3.2 x 102 M-1.56   

It has been shown that guanidinium-based receptors have the ability to form 

stable complexes even in competitive solvents.  While many of these artificial receptors 

contain a benzene or pyrrole backbone, a guanidinium-bearing ferrocene artificial 

receptor has also been developed.50  In 1997, Beer et al developed a ferrocene receptor 

that formed complexes with pyrophosphate with a 2:1 binding stoichiometry (Figure 

18).57  Aqueous methanol NMR titrations indicated that even with 50% D2O, the 

complex formed with an association of 4.6 x 103 M-2.57 
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Figure 18.  Beer’s guanidinium-based ferrocene receptor  

 

Beer’s receptor was one of the first reported artificial receptors bearing the ferrocene 

backbone.  Since his work, there have only been a handful of ferrocene receptors 

reported that were not used specifically as electrochemical sensors.58-60  

Ferrocene receptors.  The presence of the redox active subunit make ferrocenes 

attractive as electrochemical sensors for ions.50  While there has been extensive work 

devoted to using ferrocenes as sensors,61-73 there has been little work done toward 

studying ferrocenes as artificial receptors for oxoanion binding.57-60  The semi-flexible 

nature of the ferrocene backbone also makes 1,1’-bis-substituted ferrocenes attractive as 

hosts.  Much like induced fit, this semi-flexible backbone allows for some rotation so 

that the ferrocene host may conform better to its guest. 
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In 2001, Tucker and coworkers designed three 1,3-bis-substituted ferrocene 

receptors that bound urea derivatives in chloroform through complementary hydrogen 

bonds (Figure 19).58  NMR titration experiments with a variety of ureas showed that 

barbital was able to bind to the ferrocene derivative shown with the highest affinity of 

3.2 x 103 M-1.58 This particular ferrocene derivative was able to form the most hydrogen 

bonds with its guest, attributing to the strength of the complex.58 

 

Figure 19.  Tucker’s bis-substituted ferrocene and barbital 

 

 In 2005, Roy’s group developed a 1,1’-bis-substituted ferrocene that was able to 

bind many different unprotected amino acids in aqueous acetonitrile (Figure 20).59  Due 

to the redox-active ferrocene unit, binding could be determined through many methods, 

and this group studied binding through UV-vis, NMR, isothermal titration calorimetry 

(ITC), and even cyclic voltammetry (CV).59  A 1:1 binding stoichiometry was 

determined for the ferrocene receptor and the amino acids.59  ITC studies in 1:1 

acetonitrile:water showed that the ferrocene receptor was able to bind glutamate with a 

strong association of  nearly 4.4 x 104 M-1.59 
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Figure 20.  Roy’s 1,1’-bis-substitited ferrocene binds amino acids 

  

A ferrocene receptor that showed high selectivity for acetate in DMSO was 

developed by Lin et al in 2009 (Figure 21).60  A series of UV-vis and NMR 

investigations were carried out to monitor the binding of their 1,1’-bis-substituted 

ferrocene receptor to tetrabutylammonium salts of halogens, acetate, hydroxide, and 

phosphate.  Fluoride, hydroxide, and phosphate anions were all able to bind with a Ka > 

103 M-1, but acetate showed a larger binding affinity of 3.9 x 104 M-1 (chloride, bromide, 

and iodide showed no significant interactions).60 

 

Figure 21.  Lin’s acetate-selective ferrocene receptor 
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A unique bis-ferrocene receptor was developed by Felix et al in 2005 (Figure 

22).64 Dicarboxylates phthalate, isophthalate, dipiccolinate, and 4-nitrobenzoate were 

bound to this bis-ferrocene receptor.64  NMR titration experiments in CD3OD indicated a 

1:2 stoichiometry of host:guest and that phthalate bound the strongest with an association 

of 1.25 x 106 M-1.64  X-ray analysis showed that instead of the carboxylates being 

encapsulated by the guest, they instead bound on the outside of the host to the amino 

hydrogens.64   

 

Figure 22.  Felix’s bis-ferrocene receptor binds dicarboxylates 

 

In the examples above, ferrocene has been shown to be a promising backbone for 

artificial receptor design.  However, these studies have failed to exploit many different 

types of the non-covalent interactions that are useful for binding in water.  They have 

also overlooked the usefulness of the guanidinium moiety, which has proven to be an 

attractive feature of many other artificial receptors already mentioned.  In Chapters 1 and 

2, charged 1,1’-bis-substituted ferrocene receptors bearing the guanidinium moiety and 

their binding to carboxylates in competitive solvent will be discussed in more detail.74 
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Finally, while ferrocenes can be great hosts, they may also be excellent guests.  

Studies have shown that ferrocenes bind tightly to cyclodextrins and cucurbit[n]urils in 

water.        

Cyclodextrin and cucurbit[7]uril as ferrocene hosts.   As previously 

mentioned, both cyclodextrins and cucurbit[n]urils have a hydrophobic binding pocket 

and are able to encapsulate guests.  Cucurbit[7]uril and β-cyclodextrin (Figure 23) have 

similar cavity sizes, so their binding to various guests are often compared.75 In most 

cases, cucurbit[n]urils bind their guests more strongly than cyclodextrins.26, 30, 31, 33, 75-79 

This strength is partially attributed to the favorable ion-dipole interactions that are 

possible with the carbonyls at the portal of CB[7].75  The hydroxyl groups lining the CD 

opening do not appear to have such strong favorable interactions with guests.75 

 

Figure 23.  Cucurbit[7]uril (A) and β-cyclodextrin (B) 
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 In 2000, Gobetto et al studied the strength of complexation of many substituted 

ferrocenes with β-cyclodextrin (Figure 24A and B).26  In 95% water: acetonitrile 

solutions, hydroxymethyl ferrocene A bound to β-CD with an association greater than 2 

x 103 M-1.26  (Ferrocenylmethyl)trimethylammonium ion B bound with an association of 

4.2 x 103 M-1.26  Binding studies by Kaifer and Kim showed that in pure water, 

ferrocenes A and B bound to CB[7] with association constants of 3 x 109 M-1 and 4 x 

1012 M-1, respectively.30, 31, 75  

 

Figure 24.  Substituted ferrocene guests of β-CD and CB[7] 

 

At this point, it may tempting to say that all ferrocene compounds bind to CB[7] 

several orders of magnitude stronger than they bind to CDs; however, Kaifer and Kim 

noticed that ferrocene carboxylate did not bind to CB[7] (Figure 24C). 30, 31, 75  In 

contrast to this finding, compound C did indeed bind to β-CD with an association greater 

than 103 M-1.30, 31, 75  This inability of C to bind to CB[7] is attributed to the unfavorable 

ion-dipole interactions of the ferrocene carboxylate with the portal carbonyls of the 

CB[7].75 The β-CD portal hydroxyl groups clearly do not influence binding as much as 

the CB[7] portal carbonyls. 
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Exploiting the favorable ion-dipole interactions between CB[7] and its guest, 

Kaifer and Kim developed a guest that formed stable inclusion complexes with CB[7] 

with associations as strong as 3 x 1015 M-1, which is the highest reported Ka for a 

synthetic receptor (Figure 25A).30, 76-78  To understand the importance of this ion-dipole 

interaction on the complex stability, Kaifer and Kim synthesized compounds C and D, 

which are structurally similar to compound B (which has a Ka of  4 x 1012 M-1), but with 

a different number of methylene groups (Figure 25).79 

 

Figure 25.  Kaifer’s bis-substituted ferrocene guests of CB[7] 

It was found that compounds C and D bound to CB[7] in water with associations 

of 3.6 x 1010 M-1 and 7.3 x 1010 M-1, respectively.79  Cleary, since there was a 2-order of 

magnitude decrease in complex stability for compounds C and D compared to B, the 

number of methylene groups was important to the complex stability.  The studies by 

Kaifer and Kim (Figures 24 and 25) have shown that hydrophobic interactions paired 

with favorable ion-dipole interactions can have a large impact on complex stability.   
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CHAPTER 1 
 

PINCHER FERROCENE-DERIVED CATION CARBOXYLATE ION PAIRS IN 
AQUEOUS DMSO1 

 
Taken in part from: Beck, C. L.; Berg, S. A.; Winter, A. H., Org. Biomol. Chem., 2013, 

11, 5827. 
  

INTRODUCTION 

  The rational synthesis of complex aggregates from simple building blocks 

remains an ongoing challenge in supramolecular chemistry.2-6 The majority of self-

assembled architectures reported to date rely on electrostatic interactions (ion-ion, H 

bonds) between building blocks.2, 3, 7-12 While these electrostatic forces lead to aggregates 

in solvents such as chloroform, usually they fall apart in polar solvents such as DMSO or 

water where the strengths of these interactions are diminished by competitive 

interactions with solvent.13-18 

  In contrast to this general trend, a series of investigations have shown that 

aggregates containing a guanidinium-carboxylate interaction can persist even in highly 

polar solutions.19-22 Experimental binding studies in combination with computational 

investigations have suggested that the charged nature of the host and guest is essential to 

understanding the stability of these guanidinium-carboxylate pairs in water.19 The 

charged nature of the host and guest help with complex formation by providing an 

additional electrostatic interaction, by increasing the strength of the H-bonds (charge-

assisted), and by improving the entropy of binding by returning ordered ion-solvating 

waters into the bulk when the charges are “quenched” (e.g. ∆Ssolvation > 0).9, 13, 19, 23 
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  It is essential to understand how to maximize the binding of a host to a single 

functional group such as carboxylate to permit the design of improved self-assemblies 

with cooperative multivalent interactions, particularly for self-assembly in water.24 

Strong cooperative interactions are essential for the molecular recognition of 

biomolecules25 such as peptides,26-29 in the design of organocatalysts,30, 31 and the design 

of complex self-assemblies in general.  Towards this goal, we anticipated that recruiting 

additional interactions to the carboxylate could increase the strength of the complex.23  

Here we report the synthesis of several pincher bis(guanidinium) salts using a ferrocene 

core and the binding of these dications to benzoate.  Binding studies using NMR 

titrations indicate that these ions form tight complexes in aqueous DMSO solutions and 

that additional electrostatic interactions dramatically increase the complex stability.   We 

find that ferrocene is a potentially useful semi-flexible backbone that may allow the 

construction of switchable self-assemblies in water.32-45 

RESULTS AND DISCUSSION 

  The (di)cationic hosts for benzoate used in this study are shown in Figure 1.  

With one exception, the binding constants for these hosts were determined in aqueous 

DMSO mixtures to benzoate.  The complex of 10 with benzoate precipitates in D2O so 

we bound 10 to acetate instead.   Compounds 7 and 8 were unstable to hydrolysis of the 

acyl moiety, so association constants were not obtained for these ions.  Compound 9 was 

used as a computational control (described vide infra).  The binding constants and 

binding isotherms can be seen in Figures 2 and 3.   
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Figure 1.  (Di)cationic hosts described in this study. 

Effect of solvent on association constant.  The binding of the acylguanidinium 

ion 2 to carboxylates is well known.15, 46 Thus, we used this cation as a control to ensure 

that we were able to reproduce literature-reported association constants and provide a 

reference for the association of a carboxylate to a mono guanidinium cation.  

Guanidinium ion itself does not significantly bind carboxylates in aqueous DMSO 

solutions46-48 but the acylguanidinium ion does due to the acyl group increasing the 

acidity of the H-bonding protons,49 leading to stronger hydrogen bonds.20  As typified 

from titration of the “control” compound acylguanidinium tetrafluoroborate 2, the 

solvent has a dramatic effect on the binding constant to benzoate.  Consistent with 

previous studies of this compound, while the binding constant (Ka) for 2 was 1090 M-1 in 

9:1 DMSO:D2O, the binding constant was negligible in 1:1 DMSO:D2O (Figure 2).  

Benzoate has limited solubility in pure DMSO, which precluded study in neat DMSO.  

This general trend is observed for all the (di)cations, as the binding constants are much 
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larger in 9:1 DMSO:D2O than in 1:1 DMSO:D2O and much larger in 1:1 DMSO:D2O 

than in neat D2O.   

Importance of cooperativity on complex stability.  A comparison between the 

binding of the monocationic and dicationic hosts is instructive to evaluate the effect of 

cooperativity on the complex stability.25  The effect of the additional cation on the 

association constant is dramatic in all solvent systems studied.50-52  For instance, the 

mono ammonium salt 3 has a binding constant of 45 M-1 in 9:1 DMSO:D2O, while the 

bis(ammonium) salt 4 has a binding constant of 1020 M-1 in the same solvent system.  

The bis(ammonium) dication 4 even achieves a (weak) binding constant of 30 M-1 in 

pure D2O, which is surprising since ammonium salts are unable to form strong H-bonds 

in water.  The mono guanidinium salt 5 has an association constant of 175 M-1 in 9:1 

DMSO, and the bis(guanidinium) ion 6 has an association constant of 11,000 M-1 under 

the same conditions.  These data demonstrate the importance of recruiting additional 

cooperative electrostatic interactions to achieve highly stable complexes in competitive 

solvents (See Figure 2 and Table 1).53  

Binding in neat water is significant only for pincher dicationic hosts.  It is 

challenging to achieve complexation in neat water without exploiting hydrophobic 

interactions.54-57 Indeed, all of the (di)cations studied in this paper showed small or 

negligible binding in pure water, with the exception of bis(guanidinium) pincher 6 and 

the bis(acylguanidinium) derivative 10 which achieve association constants of 50 M-1 

and 850 M-1 to benzoate and acetate, respectively.  The larger binding constant for 10 

over 6 can be attributed to the carbonyl increasing the acidity of the N-H bonds, which is 
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known to increase the strength of the resulting hydrogen bonds.49  It should be noted, 

however, that the switch from benzoate to acetate as the counter ion hinders a direct 

comparison (the complex of benzoate with 10 precipitates from D2O above 2 equivalents 

of benzoate, which is why we report the association constant for this dication with 

acetate).  While making comparisons of association constants between studies can be 

hazardous due to small changes in conditions (salt, pH, solvent, fitting parameters, etc) 

leading to significant differences in association constants, it should be noted that the 

association constant of 10 to acetate is one of the highest reported for a host to a mono-

carboxylate in neat water that relies only on electrostatic interactions.24, 54, 58  We 

attribute this tight binding to the ferrocene providing a semi-flexible backbone with only 

a pivot joint-type of flexibility to allow the compound to find appropriately directional 

H-bonding, but that is otherwise rigid to minimize the entropic penalties of binding.59, 60  

The two acyl(guanidinium) ions in 10 also provide strong cooperative hydrogen bonding 

opportunities for the carboxylate ion.   
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Table 1. Binding constants of 1 with 2-6 in aqueous DMSO solutions  

Substrate % DMSO Ka (M-1) 
2 90 1,090 
2 80 900 
2 70 540 
2 60 185 
2 50 7 
3 90 45 
4 90 1,020 
4 50 150 
4 0 30 
5 90 175 
6 90 11,000 
6 50 4,380 
6 0 50 

10† ‡ 90 >106 
10† 50 39,000 
10† 0 850 

Estimated error limit in Ka < ± 25% 

†Carboxylate is acetate instead of benzoate due to solubility problems. 

‡UV-vis titrations were performed and the absorbance at 325 nm was measured.  
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Figure 2.  Binding curves and fits from titration of cations 2 (A), 3 (B), 4 (C), 5 (D), 6 (E 

and F), 10 (G and H) with benzoate 1 (acetate 17 for 10) following the methyl peak in A, 

and the ferrocenyl proton in B-F, and in G 50% DMSO.  The carboxylate’s acetate 

proton was followed in G for pure D2O.  Percent DMSO-d6: Black square (90), Teal 

pentagon (80), Green diamond (70), Purple star (60) Red circle (50), Blue triangle (0).  
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DFT calculations of complex enthalpy correlate well with complex 

association constants.  DFT computations (B3LYP/6-31G(d))61 were used to compute 

the geometries and binding enthalpies of complexes 2-10.  Previous studies have shown 

that trends in binding enthalpies for related cationic hosts match well with experimental 

data, even though such calculations omit entropic considerations and explicit solvent 

effects.8 A considerable effort was made to find the global minima for the complex 

structures by optimizing numerous alternative input geometries and group orientations at 

a lower level of theory (B3LYP/STO-3G), which led us to find numerous local minima, 

particularly for the pincher complexes.  The lowest minimum found at the lower level of 

theory was optimized with the larger basis set.  A PCM water solvation model was 

employed. 

  The computed structures of the complexes are shown in Figure 3 and the binding 

enthalpies are shown in Table 2.  As can be seen from Table 2 and the graphical 

depictions of the complexes (Figure 4), the computed binding enthalpies correlate well 

with the experimentally determined association constants (Figure 5).   It is possible that 

the changes in entropy upon binding are similar between the complexes, which may 

allow the computations to correlate well with the experimental data even though they 

omit explicit solvents and entropy changes.8  These data bode well for the use of 

computation in the design of novel tight-binding cationic hosts for carboxylate ions.  



www.manaraa.com

 
 

42	
  

Table 2.  Computed changes in binding enthalpy for carboxylate complexes of 

(di)cations 2-10 (B3LYP/6-31G(d)).   

Complex ∆ Enthalpy 
(kcal/mol) 

2 -30.30 
3 -23.17 
4 -31.74 
5 -25.38 
6 -32.23 
7 -28.69 
8 -38.38 
9 -30.04 

10* -45.08 

*Acetate was the carboxylate rather than benzoate. 

 

 

Figure 3.  Computed structures of the 1:1 association complexes (B3LYP/6-31 G(d)).  

Lowest minima found are shown. 

3   1 5   1 2   1

4   1 6   1

9   17   1

8   1 10   17
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Figure 4.  Graphical depiction of binding constants of compounds 2-6, 10 in aqueous 

DMSO solutions. 

 

Figure 5.  Plot of computed enthalpy change in binding (B3LYP/6-31G(d)) versus log 

Ka shows a reasonable correlation.   
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Scheme 1.  Synthetic schemes for cations 3-6, 10 

EXPERIMENTAL 

Materials and methods.  Anhydrous solvents were purchased from Acros 

Organics.  Ferrocene was recrystallized from ethanol prior to use.  Boc anhydride was 

purified following a procedure from literature. 66 Ferrocene carboxaldehyde,67, 68 

Ferrocene carboxaldehyde oxime,69, 70 Di-Boc thiourea,71-73 1,1’- ferrocene 

dicarboxaldehyde,74 1,1’- ferrocene dicarboxaldehyde dioxime,69 1,1’-

diacetylferrocene,75, 76 1,1’-ferrocene dicarboxylic acid,75, 76 and Boc-guanidine77 were all 

synthesized following literature procedures.  All spectra matched literature values.  All 
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other chemicals were purchased from Aldrich, Fisher Scientific, or Oakwood Chemical 

and used without further purification. 

Synthesis of (di)cation hosts.  Ferrocene compound 11 was synthesized by 

reduction of the ferrocene carboxaldehyde oxime with lithium aluminium hydride (LAH) 

to form aminomethyl ferrocene 11.  Addition of dry HCl to this product afforded product 

3 as the chloride salt.  Compound 3 was then reacted with N,N’-di-Boc protected 

thiourea and Mukaiyama’s reagent to form compound 13 in excellent yield.62 

Deprotection with TMSOTf afforded the desired salt 5.63 TMSOTf was used as the 

deprotection agent because typical deprotection with TFA led to tert. butyl alkylation  

product, and SnCl4 caused oxidation of the ferrocene to its richly-colored ferrocenium 

ion.64  Reduction of 1,1’-ferrocene dicarboxaldehyde dioxime with LAH formed the 

unstable amine intermediate product 12, which was then turned into the stable 1,1’-

bis(aminomethyl)ferrocene hydrochloride 4 by addition of dry HCl solution.  PyBOP 

was used to couple ferrocene dicarboxylic acid with Boc-guanidine to yield compound 

16.65   Compound 10 was formed after deprotection of 16 with standard TFA 

deprotection conditions.14  

  Reaction of compounds 3 or 4 with 18 and Mukaiyama’s reagent formed the Boc-

protected versions of 7 and 8, but these compounds were unfortunately unstable to 

repeated attempts to purification by silica gel and alumina column chromatography and 

could never be isolated as pure compounds.   
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N-acetylguanidinium tetrafluoroborate (2).  N-acetylguanidine (1.0 g, 9.89 mmol, 1 

eq.) was dissolved in 5 mL MeOH.   Tetrafluoroboric acid diethyl ether complex (2.69 

mL, 19.78 mmol, 2 eq.) was added to the mixture, and the contents stirred overnight at rt 

before excess diethyl ether (125 mL) was added to the flask to precipitate the salt.  The 

resulting solid was filtered and washed with diethyl ether to afford 1.76 g (94%) as a 

white solid.  mp = 165-167 °C; 1H NMR (CD3OD, 400 MHz) δ = 2.67(s, 3H); 13C NMR 

(D2O, 100 MHz) δ = 23.7, 154.4, 174.7. 

 

Aminomethylferrocene (11). LiAlH4 (2.74g, 72.13 mmol, 5 eq.) was dissolved in 100 

mL dry THF and cooled to 0 °C under argon.  Ferrocene carboxaldehyde oxime, (3.30 g, 

14.43 mmol, 1 eq.) dissolved in 50 mL of THF was slowly added to the flask containing 

LiAlH4.  The resulting mixture was heated to reflux, under argon, and stirred overnight 

before it was cooled to -40 °C and quenched slowly with water.  During quenching, the 

rate of water addition was approximately 5 mL per 15 minutes.  Prior to being fully 

quenched, a thick slurry formed within the flask.  The compound was extracted several 

times with CHCl3 (5 x 250mL), washed with brine, and then dried over anhydrous 

Na2SO4.  The solvent was removed under reduced pressure affording the desired 

compound in quantitative yield as an unstable yellow oil: 1H NMR (CD3OD-d4, 400 

MHz): δ = 3.50 (s, 2H,), 4.11 (t, J = 2 Hz, 2H), 4.15 (s, 5H), 4.21 (t, J = 2 Hz, 2H); 13C 

NMR (CD3OD-d4, 100 MHz) δ = 40.6, 69.9, 70.4, 70.6, 79.7; HR-MS(ESI+) m/z = 

215.0390 (M)+, (calculated for C11H13FeN: 215.0397). [Note: Due to rapid 

decomposition, excess heat while rotovapping should be avoided.  Temperatures should 
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not to exceed 50 °C]. 

 

Aminomethylferrocene hydrochloride (3).  The unstable aminomethylferrocene (11) 

(3.10g, 14.43 mmol, 1 eq.) was dissolved in 15 mL of dry dichloromethane.  2 M dry 

HCl/ diethyl ether solution (10.8 mL, 21.64 mmol, 1.5 eq.) was added to the solution.  

The resulting mixture was allowed to stir at rt under argon for 15 min before the solid 

was filtered and washed with diethyl ether and dichloromethane.  The goldenrod-colored 

solid was dried in vacuo, affording 3.39 g (94%) of stable product: mp = 180 °C 

(decomp); 1H NMR (CD3OD-d4, 400 MHz) δ = 3.90 (s, 2H,), 4.21 (s 5H) 4.27 (t, J = 2 

Hz, 2H), 4.35(t, J = 2 Hz, 2H); 13C NMR (CD3OD, 100 MHz) δ = 40.6, 69.9, 70.4, 70.6, 

79.7; HR-MS(ESI+) m/z =  215.0390 (M+), (calculated for C11H13FeN: 215.0397).  

 

1,1’-di(aminomethyl)ferrocene (12).  LiAlH4 (3.6 g, 96.5 mmol, 10.5 eq.) was 

dissolved in 100 mL dry THF and cooled to 0 °C under argon.  1,1’-ferrocene 

dicarboxaldehyde dioxime, (2.5 g, 9.2 mmol, 1 eq.) dissolved in 100 mL dry THF, was 

slowly added to the flask containing LiAlH4.  The resulting mixture was heated to reflux 

and stirred for 6 h before it was cooled to -40 °C and slowly quenched with water, with a 

rate of water addition of 5 mL per 15 min.  Prior to being fully quenched, a thick slurry 

formed within the flask.  The solution was extracted several times with CHCl3 (5 x 250 

mL), washed with brine, and then dried over Na2SO4.  The solvent was removed under 

reduced pressure.  Purification by silica gel column chromatography (40 – 60 micron 

mesh) with MeOH/ NH4OH (9:1) afforded 1.32 g (60%) as an unstable yellow oil that 
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decomposes to a purple oil upon standing within minutes to hours: 1H NMR (CD3OD, 

400 MHz) δ = 3.52 (s, 4H,), 4.12 (t, J = 2 Hz, 4H), 4.20 (t, J = 2 Hz, 4H); 13C NMR 

(CD3OD, 100 MHz) δ = 41.4, 69.2, 69.5, 90.1; HR-MS(ESI+) m/z = 244.0657 (M+), 

(calculated for C12H16FeN2: 244.0663).  [Note: Due to rapid decomposition, excess heat 

while rotovapping should be avoided.  Temperatures should not to exceed 50 °C]. 

 

 

1,1’-di(aminomethyl)ferrocene hydrochloride (4).  1,1’-di(aminomethyl)ferrocene 

(12) (1.32 g, 5.49 mmol, 1 eq.) was dissolved in 5 mL methanol.   2 M dry HCl/ diethyl 

ether solution (5.50 mL, 10.98 mmol, 2 eq.) was added to the flask.  The mixture was 

allowed to stir for 15 minutes at ambient temperature.  Excess diethyl ether (200 mL) 

was added to the solution to fully precipitate the salt.  The solid was filtered and washed 

with diethyl ether (125 mL) to afford 1.63 g (95%) of the desired stable product as a 

golden powder:  mp = 205 °C (decomp); 1H NMR (CD3OD, 400 MHz) δ = 4.078 (s, 

4H,), 4.44 (t, J = 2 Hz, 4H), 4.51 (t, J = 2 Hz, 4H). 13C NMR (CD3OD, 100 MHz) δ = 

38.8, 70.2, 70.4, 78.8; HR-MS(ESI+) m/z = 244.0657 (M+), (calculated for C12H16FeN2: 

244.0663). 

 

 N, N’-tert-butyl carbamate guanidinylmethyl ferrocene (13).  Aminomethylferrocene 

hydrochloride (3) (1.0 g, 3.98 mmol, 1 eq.), N,N’-Di-Boc-thiourea (2.20 g, 7.95 mmol, 2 

eq.), and 2-chloro-1-methylpyridinium iodide (3.55 g, 7.95 mmol, 2 eq.) were dissolved 

in 75 mL CH2Cl2 at rt under argon.  Et3N (11.1 mL, 79.5 mmol, 20 eq.) was added to the 
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flask.  The mixture was heated to reflux and stirred for 7 hours under argon before it was 

cooled to ambient temperature.  Contents were filtered over a plug of silica gel and 

washed with copious amounts of hexanes/ EtOAc (7:3) (500 mL) to remove excess 2-

chloro-1-methylpyridinium iodide.  The filtrate was removed under reduced pressure.  

Purification by silica gel column chromatography with hexanes/ EtOAc (85:15) afforded 

1.01 g (93%) of the desired product as a yellow powder.  [Notes: Solvent is extremely 

important for this reaction.  More polar solvents (acetonitrile) will yield no desired 

product.  The pyridinium salt will not dissolve in dichloromethane, which allows for the 

slow formation of the unstable imine intermediate.  As a side product of this reaction, 

tert-butyl carbamate is formed (spectra were compared to that from literature to confirm 

this).  This impurity may be removed prior to column chromatography by doing an acid 

extraction with slightly acidic (pH ~ 4-5) water, making column chromatography easier, 

but is not required].  mp = 143-145 ˚C; 1H NMR (CD3OD, 400 MHz) δ = 1.48 (s, 9H), δ 

1.55 (s, 9H) δ 4.18 (t, J = 2 Hz, 2H), 4.21 (broad s, 4H), 4.22 (s, 5H); 13C NMR (CDCl3, 

100 MHz) δ = 28.2, 28.5, 40.6, 67.6, 68.1, 68.8, 79.5, 83.3, 84.3, 153.3, 155.7, 163.7; 

HR-MS(ESI+) m/z = 458.1745 (M+), (calculated for C22H32FeN3O4: 458.1742).  

 

Guanidinylmethylferrocene Triflate (5).  Compound 13 (100 mg, 0.219 mmol, 1 eq.) 

was dissolved in 20 mL dry dichloromethane at rt under argon.   2,6-lutidine (0.76 mL, 

6.56 mmol, 30 eq.), followed by TMSOTf (1.0 mL, 5.47 mmol, 25 eq.) were added to the 

flask.  The resulting solution refluxed for 2 days under argon with stirring, before being 

cooled to 0 °C and quenched with water.  No extraction was performed.  The 
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dichloromethane was removed by rotary evaporation.  Excess 2,6-lutidine was removed 

by column chromatography in CHCl3/ MeOH (95:5).  Further purification by preparatory 

TLC plate with CHCl3/ MeOH (9:1) afforded the desired product 56.3 mg (63%) as a 

yellow powder.  [Notes:  Addition of EtOAc creates a side product that is difficult to 

remove, so EtOAc was avoided.   The first column removes most of the 2,6-lutidine, but 

some co-elutes with the desired product, so preparatory TLC was also used].  mp = 180 

°C (decomp); 1H NMR (DMSO-d6, 400 MHz) δ = 4.05 (s, 2H), δ 4.15 (t, J = 2 Hz, 2H), 

4.18 (s, 5H), 4.23 (t, J = 2 Hz, 2H); 13C NMR (CD3OD, 100 MHz) δ = 47.0, 69.4, 69.7, 

69.9, 120.1, 122.1, 123.3, 157.9; 19F NMR (CD3OD, 376.05 MHz) δ = 80.18; HR-

MS(ESI+) m/z = 258.0692 (M+H)+, (calculated for C34H52FeN6O8: 258.0694).  

 

1,1’- ferrocenylmethyl-di-Boc guanidine (14).  1,1’-di(aminomethyl)ferrocene 

hydrochloride (4)  (0.10 g, 0.319 mmol, 1 eq.), N,N’-di-Boc-thiourea (0.177 g, 0.629 

mmol, 2 eq.), and 2-chloro-1-methylpyridinium iodide (0.284 g, 1.11 mmol, 3.5 eq.) 

were dissolved in 20 mL dry CH2Cl2 and 5 mL dry DMF under argon. Et3N was added to 

the flask (0.66 mL, 4.78 mmol, 15 eq.).  The mixture was heated to reflux and stirred for 

3 h. under argon before it was cooled to rt.  Following extraction several times with 

CH2Cl2 to remove DMF, the product was washed with brine and then dried over 

anhydrous Na2SO4.  The solvent was removed under reduced pressure.  Purification by 

silica gel column chromatography with hexanes/ EtOAc (7:3) afforded 0.0864 g (37%) 

of the desired product as a yellow powder.  [Notes: Solvent is extremely important for 

this reaction.  More polar solvents (acetonitrile) will yield no desired product.  The 
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pyridinium salt will not dissolve in dichloromethane, which allows for the slow 

formation of the unstable imine intermediate.  As a side product of this reaction, t-butyl 

carbamate is formed; the spectra were compared to that from literature.  This impurity 

can be removed prior to running a column by doing an acid extraction with slightly 

acidic (pH = ~4-5) water].  mp = 230 °C (decomp); 1H NMR (CD3OD, 400 MHz) δ = 

1.50 (s, 18H), 1.56 (s, 18H), 4.26 (s, 4H), 4.26 (t, J = 2 Hz, 4H), 4.30 (t, J = 2 Hz, 4H); 

13C NMR (CDCl3, 100 MHz) δ = 28.2, 28.5, 40.4, 68.3, 69.1, 79.5, 83.3, 84.9, 153.3, 

155.7, 163.7; HR-MS(ESI+) m/z = 727.3243 (M+), (calculated for C34H52FeN6O8: 

727.3316).   

 

1,1’-bis(guanidinylmethyl)ferrocene hydrochloride (6).  1,1’- ferrocenylmethyl- di-

Boc guanidine (14) (0.207 g, 0.284 mmol, 1 eq.) was dissolved in 20 mL EtOAc.  SnCl4 

(0.27 mL, 2.27  mmol, 8 eq.) was added to the flask.  The mixture stirred under argon at 

ambient temperature for 1.5 hours before the solvent was removed by rotary evaporation 

without heat.  The unstable salt was dissolved in 2 mL MeOH, and then precipitated by 

the addition of excess diethyl ether (150 mL).  The solid was filtered, and then re-

dissolved in MeOH for transfer to a flask.  The solvent was removed in vacuo, without 

heat, affording 0.0962 g (85%) of the desired yellow salt as a film.  [Notes:  Typical 

deprotection conditions with TFA forms ferrocenium ion.  Decomposition occurs when 

heat is used during removal of the EtOAc; this is evident with a color change from 

yellow to green/ blue.  To ensure all removal of SnCl4, the salt may need to be re-

dissolved in a small amount of MeOH (less than 1mL), and then re-precipitated with 
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diethyl ether.  Three times of repeating this process typically removes all traces of SnCl4.  

The salt was not bench stable and was stored on a high vacuum line].  1H NMR (DMSO-

d6, 400 MHz) δ = 4.32 (s, 4H), 4.48 (t, J = 2 Hz, 4H), 4.52 (t, J = 2 Hz, 4H); 13C NMR 

(CD3OD, 100 MHz) δ = 42.0, 70.4, 70.7, 158.0; HR-MS(ESI+) m/z = 327.1216 (M+), 

(calculated for C14H20FeN6: 327.1218).   

 

1,1’-bis(guanidinylmethyl)ferrocene triflate (15).  1,1’-di(aminomethyl)ferrocene 

hydrochloride (4) (156.3 mg, 0.214 mmol, 1 eq.) was dissolved in 20 mL dry 

dichloromethane at rt under argon.  2,6-lutidine (1.49 mL, 12.83 mmol, 60 eq.) followed 

by TMSOTf (1.94 mL, 10.70 mmol, 50 eq.) were added to the flask.  The resulting 

solution was refluxed overnight with stirring, before being cooled to rt and quenched 

with water and MeOH.  The dichloromethane was removed under reduced pressure.  

Excess 2,6-lutidine was removed by column chromatography in CHCl3/ MeOH (9:1).  

Purification by preparatory TLC plate with chloroform/ MeOH (9:1) afforded the desired 

product (129.3 mg, 97%) as a yellow powder.  [Notes: Addition of EtOAc will create 

side product that is difficult to remove, so EtOAc was avoided.  The first column 

removes most of the 2,6-lutidine, but some co-eluted with the desired product, which is 

why preparatory TLC was also used].  mp = 180 °C (decomp); 1H NMR (DMSO-d6, 400 

MHz) δ = 4.05 (s, 4H), δ 4.19 (t, J = 2 Hz, 4H), 4.25 (t, J = 2 Hz, 4H); 13C NMR 

(CD3OD, 100 MHz) δ = 41.7, 70.1, 70.4, 82.3, 116.7, 119.9, 123.0, 126.2, 157.7; 19F 

NMR (CD3OD, 376.05 MHz) δ = 80.2; HR-MS(ESI+) m/z = 3271216 (M+), (calculated 

for C14H20FeN6: 327.1218). 
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N, N’-tert-butyl carbamate (acetylguanidine)ferrocene (16).  1,1’-ferrocene 

dicarboxylic acid (1.0 g, 3.62 mmol, 1 eq.) and PyBOP (3.77 g, 7.25 mmol, 2 eq.) were 

dissolved in 30 mL dry DMF under argon.  4-methylmorpholine (2.39 mL, 21.74 mmol, 

6 eq.) was added to the flask.  The mixture was stirred under argon at rt for 30 min. 

before Boc-guanidine (2.31 g, 14.49 mmol, 4 eq.) was added to the flask.  The contents 

stirred for 25 hours before the DMF was removed in vacuo.   The organic phase was 

extracted several times with CH2Cl2 (5 x 100 mL), washed with brine, and dried over 

anhydrous Na2SO4.  The solvent was removed under reduced pressure.  Purification by 

silica gel column chromatography with hexanes/ EtOAc (1:1) afforded 1.346g (67%) of 

the desired product as an orange solid: mp = 85-87 °C; 1H NMR (CD3OD, 400 MHz) δ = 

1.54 (s, 18H), 4.54 (t, J = 2 Hz, 4H), 4.75 (t, J = 2 Hz, 4H); 13C NMR (CD3OD, 100 

MHz) δ= 28.5, 73.0, 73.8, 80.2, 82.3, 158.5, 160.1, 180.2; HR-MS(ESI+) m/z = 557.1817 

(M+H)+, (calculated for C24H33FeN6O6: 557.1806).   

 

1,1’-bis(acetylguanidine)ferrocene hydrochloride (10).  Compound 16 (2.130 g,  3.83 

mmol, 1 eq.) was dissolved in 25 mL TFA.  The resulting mixture stirred for one hour at 

rt before the liquid was removed in vacuo.  The remaining solid was dissolved in 15 mL 

MeOH and 45 mL 1.2M HCl solution in water.  The mixture was stirred for 2 h before 

the solid was filtered, affording 1.227 g of 10 (75%) as a salmon-colored powder: mp = 

210 °C (decomp); 1H NMR (D2O, 400 MHz) δ = 4.81 (t, J = 2 Hz, 4H), 5.12 (t, J = 2 Hz, 

4H); 13C NMR (CD3OD, 100 MHz) δ = 72.4, 75.5, 75.9, 156.4, 172.9; HR-MS(ESI+) m/z 
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= 355.0805 (M+), (calculated for C14H17FeN6O2: 355.0804).  

 

N-acyl-N’-Boc-thiourea (18).  NaH (0.72 g, 18.63 mmol, 1.1 eq.) was dissolved in 20 

mL dry THF at 0 °C. N-acylthiourea, (2.0 g, 16.94 mmol, 1 eq.) dissolved in 40 mL dry 

THF, was slowly added to the flask with NaH.  The resulting mixture was allowed to 

react for 30 minutes before di-tert-butyl dicarbonate (4.435 g, 20.35 mmol, 1.2 eq.), 

dissolved in 20 mL dry THF, was added to the reaction flask.  The resultant light green 

slurry was stirred for under argon from 0 °C to rt.  After 24 h., the mixture was cooled to 

0 °C and quenched with brine.  The organic layer was extracted with EtOAc (3 x 250 

mL), washed with brine, and then dried over anhydrous Na2SO4.  The solvent was 

removed under reduced pressure.  Purification by silica gel column chromatography with 

hexanes/ EtOAc (7:3) afforded 2.510 g (73%) as bright yellow/green crystals: mp = 112-

114 °C; 1H NMR (CD3OD, 400 MHz) δ = 1.54 (s, 9H), 2.17 (s, 3H); 13C NMR (CDCl3, 

100 MHz) δ = 24.8, 27.8, 83.7, 149.9, 170.9, 178.3; HR-MS(ESI+) m/z = 241.0616 

(M+Na)+, (calculated for C8H14N2O3S: 241.0617).  

 

Determination of association constants and complex stoichiometry.  Binding 

constants were determined through NMR titration experiments and calculated using Pall 

Thordarson’s NMR titration fitting software for Matlab.78 Job plots79 were used to 

determine the complex stoichiometry (see Figure 6).  In all cases, a maxima in the Job 

plot corresponding to a 1:1 or 1:2 stoichiometry was observed, although in some cases a 

bimodal plot was obtained with maxima corresponding to both 1:1 and 1:2 
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(di)cation:benzoate stoichiometries.  In these cases the binding isotherm was fit with 1:2 

binding equations and association constants for Ka1 and Ka2 were determined.  In all 

cases, Ka1 was at least an order of magnitude larger than Ka2 and in most cases several 

orders of magnitude (Figure 6).    

 
Figure 6.  Job’s Plots in 9:1 DMSO:D2O (A-E) and 1:1 DMSO:D2O (F) depicting a 1:1 

stoichiometry between host and guest for cations 2,3, and 5, and depicting a 1:2 

stoichiometry between host and guest for cations 4,6, and 10. 
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Figure 7.  Stacked NMR spectra for a typical NMR titration.  Stacked spectra of 3 bound 

to 1 show the upfield shift of ferrocenyl upon addition of benzoate 1.  

 

All binding constant titrations were run a minimum of three times, with the 

reported association constant being the average of the three runs.  The NMR chemical 

shift of the ferrocene peaks (as well as the methylene peaks for 3-6) were used to obtain 

the binding curves.  See Figure 7 for a representative example.  The Ka’s represent the 

average of all the fits.  Thus, a typical binding constant represents the average value of 9 

different fits for cations 3-6.  In the case of 10 bound to potassium acetate, one of the 

ferrocene proton signals overlapped with the solvent signal, reducing the number of fits 
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by one set of data points.  One representative fit for each cation is shown in Figure 2.  

Error in the Ka is estimated to be <25 percent.  The binding constants to 10 by acetate 

were too large to obtain using 1H NMR in solvents with 90% DMSO, so we switched to 

UV-Vis titrations to determine the association constants for this dication in 9:1 

DMSO:H2O. 24, 78  In 9:1 DMSO:H2O the binding isotherm for 10 to acetate clearly 

consists of two unique binding events.  These points were removed from Figure 2 for 

clarity.  Thus, we made an estimate of the Ka by fitting only the first binding event.  

CONCLUSION 

  In conclusion, the association constants for cationic ferrocene carboxylate 

complexes were determined.  The effects of recruiting an additional cationic group play a 

major role in increasing the association constant with benzoate, and some of these 

dicationic hosts form strong complexes (> 106 M-1) even in highly competitive solvents.   

The complex between pincher dication 10 and acetate is one of the strongest known for a 

carboxylate in neat water (Ka = 850 M-1) that exploits only electrostatic interactions.  The 

ferrocenyl scaffold may prove to be a useful semi-flexible backbone for switchable self-

assembly processes. 
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CHAPTER 2   

NON-COVALENT CATCH AND RELEASE OF CARBOXYLATES IN WATER1 

 

Taken in part from: Beck, C. L.; Winter, A. H., J. Org. Chem., 2014, 79, 3152-3158. 

 

INTRODUCTION   

The design of strong host-guest complexes from small molecules in aqueous 

solutions continues to be a challenge in supramolecular chemistry.2-10  In particular, 

there is considerable interest in developing suitable hosts for monocarboxylates and 

dicarboxylates since there are numerous examples of (di)carboxylates of biological 

importance within living systems.7, 11-22 Strongly-binding selective receptors to 

carboxylates with a reporting mechanism could find use as biological sensors.5, 7, 17, 20, 

23-30  Additionally, numerous pharmaceuticals contain carboxylate groups,31-37 and 

tightly-binding receptors could eventually find use in drug delivery38 by transporting 

encapsulated carboxylate pharmacophores to the site of a disease.35-37, 39, 40 

While there have been numerous studies of receptors that can bind to 

carboxylates,14, 41-47 there are fewer examples that retain strong complex affinities in 

water that rely on electrostatic interactions, since these interactions are diminished by 

competitive interactions with solvent.19, 20, 48-50  However, rigid molecules bearing a 

guanidinium moiety have been shown to bind carboxylates even in polar solutions,18, 20, 

51, 52 but associations strong enough to mimic those in biology are far from realized for 

these particular systems.53, 54  The self-assembly of non-covalent structures in polar 

solvents, such as water or DMSO, relies on electrostatic interactions between the 
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building blocks.15, 18, 55-57  These electrostatic forces, coupled with hydrogen-bonding, 

lead to aggregates in non-polar solvents,47, 58-64 however many of these complexes fall 

apart or have low association constants in polar solvents like water, due to competitive 

interactions with the solvent.8, 44, 65-67 

Previous work from our lab indicated that a dicationic pincher bis-

(acetylguanidinium)ferrocene salt 1 could bind to monocarboxylates in aqueous 

DMSO.50  Here we show that 1 forms tight complexes to dicarboxylates in pure water 

and that additional electrostatic interactions, as well as the size and shape 

complementarity of the carboxylate to the ferrocene salt, dramatically increase the 

complex stability.   Through NMR studies, we find that upon addition of cucurbit[7]uril  

(CB[7], 10), the ferrocene cation-carboxylate complex dissociates, releasing the 

carboxylate to the bulk solvent demonstrating a non-covalent catch and release process. 

 

 
 

Figure 1. Compounds described in this study 
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RESULTS AND DISCUSSION   

The (di)anionic guests used in this study are shown in Figure 1.  With one 

exception, the binding constants for these guests were determined in neat H2O by UV-

Vis titrations.  We have demonstrated the binding of 1 to monocarboxylates in water,50 

and the binding constants and stoichiometry determination of guest 2,  found via NMR 

titrations, were previously reported in literature.50  The binding of bis-

(acetylguanidinium)ferrocene to acetate 2 in water was used as a comparison for the 

carboxylates discussed in this paper.  Guest 2 was found in previous studies to bind 1 as 

strongly as 850 M-1 (Ka1) in neat water by NMR titrations.50 UV-Vis titrations were 

performed to determine the association constants of cation 1 bound to carboxylates 3-9.  

A 1:1 binding stoichiometry for carboxlates 3-9 was determined from Job plots (Figure 

2).  Representative binding isotherms can be seen in Figure 3, and these were fit to a 

1:1 binding equation.  
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Figure 2.  Determination of stoichiometry using Job’s Method of Continuous 

Variation68 indicating a 1:1 binding stoichiometry for complexes of cation 1 with 

carboxylates 3-9 at concentrations for UV-Vis titration experiments. A stoichiometry of 

1:2 was determined for the complex of cation 1 with carboxylate 2 (previously 

reported) at concentrations for NMR titration experiments.   Mole fraction in the plots 

above is denoted by the symbol χ.  
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Figure 3.  Representative binding isotherms for compound 1 with (di)carboxylate 2 

(A), 3 (B), 4 (C), 5 (D), 6 (E), 7 (F), 8 (G) and 9 (H).    All absorbances are measured at 

425 nm.  Data for A was previously reported.50  Each binding titration was repeated 

three times and the association constant was reported as the average of the three runs.  
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Importance of complementary structure on association strength.  The 

association constants for binding of 1 with (di)carboxylates 2-9 can be seen in Table 1.  

Not surprisingly, dicarboxylates bind the ferrocene host 1 better than monocarboxylates 

due to increased number of electrostatic interactions.  Most remarkably, association 

constants greater than 104 M-1 in pure water are shown for two of the ferrocene - 

carboxylate complexes 1•4 and 1•9.  

Table 1 shows a summary of experimentally determined association constants 

and the computationally determined changes in binding enthalpy. The binding curve of 

the ferrocene host with (di)carboxylates, as well as the Density Functional Theory 

(DFT) enthalpy calculations, show that the rigid dicarboxylates with the size and shape 

complementary to the ferrocene host have stronger association constants.  For example, 

1•5 and 1•6 do not position the carboxylates ideally to allow for binding without strain 

and have, as a result, diminished association constants.  Complexes 1•7 and 1•8 show 

weaker binding, presumably because of the more flexible linker connecting the 

dicarboxylate groups leads to a greater entropic penalty upon binding.  Complementary 

carboxylates 1•4 and 1•9 that have the ability to exploit the maximum number of 

electrostatic interactions were found to have the highest associations in water (Figure 

4). 
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Table 1. Binding constants of 1 with 2-9 in water and computed changes in binding 

enthalpy for complexes (B3LYP/6-31G(d)).  Estimated error in Ka < ±25% 

Substrate Ka (M-1) Log(Ka) 
∆ Enthalpy 
(kcal/mol) 

2 8.5 x 102 2.9 -45.1 

3 5.2 x 102 2.7 -40.9 

4 1.3 x 104 4.1 -62.0 

5 4.6 x 103 3.7 -55.9 

6 2.6 x 103 3.4 -45.9 

7 6.3 x 103 3.8 -62.4 

8 1.5 x 103 3.2 -66.5 

9 1.4 x 104 4.1 -64.2 

 
 

 
 

Figure 4. Computed structures of the 1:1 association complexes (B3LYP/6-31G(d)).  

Lowest minima found are shown. 
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Computational results.  With the exception of the binding of 1 with 8, the 

computed binding enthalpies of the cation-(di)carboxylate ion pairs (Figure 4) correlate 

well with experimentally determined binding constants (Figure 5).  Note that these 

computations do not incorporate entropic effects or explicit solvent (a PCM water 

solvation model was employed), so they are likely only valid for noticing trends within 

a class of host-guest complexes, such that the errors cancel out (i.e. change in entropy 

of solvation).69-71   One exception to this generally good agreement is binding of 1 to 

succinate ion 8.  The calculated enthalpy does not correlate well with its experimentally 

determined association constant.  In this case, there is anticipated to be a larger entropic 

penalty of binding for the conformationally flexible linker than for the other hosts.  

Given that this entropic penalty is omitted from our computations, it is perhaps not 

surprising that our computations overestimate the stability of this complex relative to 

the other complexes.        
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Figure 5. Plot of computed enthalpy change in binding (B3LYP/6-31G(d)) versus 

Log(Ka). 

 

Catch and Release Studies.  Ferrocene compounds and cucurbit[n]urils have 

been found to have association constants as high as 1015 M-1 in water.53, 72-82  Therefore, 

we thought it might be possible to release the carboxylates from their complexes with 

the bis-(acetylguanidinium)ferrocene cation 1 via addition of CB[7].  It was anticipated 

that CB[7] would bind the ferrocene compound 1 more tightly than any of the 

carboxylates used in the study.  We exploited the strength of the association of the 

ferrocene compound to CB[7] to allow us to monitor the release of the carboxylate 

guests via NMR.  Figure 8d shows the NMR spectra of ferrocene compound 1 mixed 

with 10.  The large upfield shift of the ferrocene protons is indicative of binding inside 

the cavity of 10.   
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It was a concern that the part of the guanidine substrates could potentially 

protrude from the CB[7] portals, thus being able to bind the carboxylate even while bis-

(acetylguanidinium)ferrocene 1 and CB[7] 10 are bound.  Hartree-Fock computations 

(RHF/ STO-3G) suggest that part of the guanidine moiety does protrude from the portal 

cavity (Figure 6).  Thus, an NMR titration of the CB[7] - ferrocene complex to maleate 

9 was done by NMR in neat D2O to determine the extent of binding of the guanidinium 

substrate to the carboxylate 9 (Figure 7).  The association constant determined for the 

interaction between the guanidine substrate and carboxylate 9 was estimated to be 185 

M-1, much weaker than the complexes to the unbound 1.  A possible explanation for this 

weak association is unfavorable ion-dipole interactions between the carboxylate anion 

and the carbonyl electrons at the portal of the CB[7].72 
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Figure 6. Binding isotherm for 1:10 complex with maleate 9 in D2O. Estimated Ka is 185 

M-1.                                                                                                                                       . 

 

 

Figure 7. Top and side views of 1 bound to 10 by Hartree-Fock computations (RHF/ 

STO-3G). 
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Figure 8.  Stacked 1H NMR spectra in D2O (4.79 ppm) for verification of 1 binding to 

10.  1 is blue and 10 is purple (a shows the proposed scheme of binding, b is the 1H 

NMR spectra of 10, c is the spectra of 1, and d is the complex of 1•10).   
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succinate protons was observed, returning the NMR signal to near the unbound 

chemical shift, indicating release of the dicarboxylate ion.  Additionally, the upfield 

shift of the ferrocene protons indicates incorporation of this dication within the cavity 

of CB[7].              

 

Figure 9.  Stacked 1H NMR spectra in D2O (4.79 ppm) for competitive binding study 

of 8.  1 is blue, 8 is red, and 10 is purple (a shows the proposed scheme of binding and 

b

O
O
O
O

Fe

N

N
NH2N

NH2N

O

O

H

H

H

H

H

H

O
O

O
O

8

Fe H
N

N
H

NH2

NH2

NH2
NH2

1

O

O

10
N N
N

N
N

N

NN
N N

NN NNOO

O

O O

O

OON

NN NN

N

N
NO O

OO
N
N

N
N

O O
Fe

N
H

NH2

NH2O

H
NH2N
ONH2

1 1081

a

O
O

O
O

8

c

d



www.manaraa.com

 
 

76	
  

release, b is the 1H NMR spectra of 8, c is the spectra of the complex of 1•8, and d is 

the complex of 1•10 showing the dissociation of 8). 

 

 

Figure 10.  Stacked 1H NMR spectra in D2O (4.79 ppm) for competitive binding study 

of 9.  1 is blue, 9 is green, and 10 is purple (a shows the proposed scheme of binding 

and release, b is the 1H NMR spectra of 9, c is the spectra of the complex of 1•9, and d 

is the complex of 1•10 showing the dissociation of 9). 
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Figure 10 shows ferrocene compound 1 bound to one equivalent of maleate 9.  

Similar to the results found with succinate, a downfield shift was observed upon 

binding of 9 to 1.  Upon addition of one equivalent of CB[7], the maleate protons shift 

back upfield, nearly restoring its original, unbound signal shift indicating release of the 

dicarboxylate.     

 
EXPERIMENTAL 

Computational Methods.  All of the computations were computed with 

Gaussian03/09.83 For all other structures, the lowest energy molecular geometries of the 

complexed and non-complexed structures were all optimized using the DFT 6-31G(d) 

basis set with the hybrid B3LYP functional, which consists of the Becke 3-parameter 

exchange functional84 with the correlation functional of Lee, Yang, and Parr.85  All 

DFT geometries were found to have zero imaginary frequencies, and all of the reported 

enthalpies contain a correction for the zero-point energy.  An effort was made to find 

the global minima for both the complexed and non-complexed structures by optimizing 

numerous input geometries.  A PCM water solvation model was employed for the DFT 

computations.   

Experimental procedures. Bis-(acetylguanidinium)ferrocene 1 was 

synthesized following a reported literature procedure.50  Cucurbit[7]uril, D2O, 

potassium benzoate, and dicarboxylic acids were purchased and used without further 

purification.  Dicarboxylates were synthesized by adding two equivalents of potassium 

hydroxide to the dicarboxylic acid in water.  Removal of the water in vacuo afforded 

the dicarboxylates as white solids.  NMR competitive binding experiments for Figures 
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6 and 7 were performed at a field of 400 MHz.  NMR competitive binding experiments 

for Figure 8 were performed at a field strength of 600 MHz.  The catch and release was 

shown for both maleate 9, which has an association constant in neat water of 1.4 x 104 

M-1 and for succinate 8, which has an association constant of 1.5 x 103 M-1.  These 

particular carboxylates were chosen for the catch and release study due to their complex 

solubility, complex strength, and the magnitude of the change in signal shift when 

bound and unbound.  At the concentrations used for typical NMR experiments, all of 

the cation-carboxylate complexes, with the exception of succinate 8, precipitate out of 

solution.  Because of this, much less concentrated solutions were made for maleate 9.  

Even at these dilute concentrations, precipitation of the complex was observed for 

malonate 7.  For the aromatic carboxylates 3-5, monitoring the shift change by NMR 

was made difficult due to precipitation.  Terephthalate 6 catch and release studies were 

inconclusive due to the small magnitude of change in the proton signal when bound and 

unbound.     

Determination of association constants and complex stoichiometry.  Binding 

constants were determined through NMR or UV-Vis titration experiments.  The 

association constants determined through UV-Vis titrations were calculated using the 

global fit in Pall Thordarson’s titration fitting software for Matlab, and the association 

constant determined through NMR titrations was calculated using the individual fit.86  

Job plots were used to determine the complex stoichiometry.  For carboxylates 3-9, a 

maximum in the Job plot corresponded to a 1:1 stoichiometry.  With the exception of 

the Ka determination of maleate 9 bound to the 1•10 complex, all binding constant 



www.manaraa.com

 
 

79	
  

titrations were run a minimum of three times, with the association constant being the 

average of the three runs.  The Ka’s shown in Table 1 represent the average value of all 

the fits.  Thus, a typical binding constant represents the average value of at least 3 

global fits consisting of 4 sets of data for each trial.  One representative fit for each 

carboxylate is shown in Figure 2 at a 425 nm absorbance.  Error in the Ka is estimated 

to be  <25 percent.   

CONCLUSION  

  We have shown the binding of a bis-(acetylguanidinium)ferrocene cation 1 to 

seven carboxylates in water by UV-Vis titrations.  The effects of recruiting an 

additional carboxylate group play a major role in increasing the association constant.  

Two of these carboxylates, phthalate 4 and maleate 9, achieve binding greater than 104 

M-1 in neat water.  DFT computations of the binding enthalpy of the rigid carboxylates 

were in good agreement with the experimentally determined association constants.  We 

have also shown competitive binding experiments by NMR, which show that the 

carboxylate guest is released to the bulk solvent upon addition of cucurbit[7]uril to the 

system.  This is due to the strong interactions between the ferrocene compound and the 

hydrophobic pocket of the CB[7].  Although two of the complex association constants 

reported are greater than 104 M-1, their strength is still insufficient for practical 

biological applications; these studies may provide the basis for preparing new ligands 

for carboxylates that also include hydrophobic interactions to maximize binding 

constants. 
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 GENERAL CONCLUSIONS FOR PART 1 

Pincher cationic ferrocene hosts for carboxylate ion guests were synthesized and 

the binding constants were determined by NMR or UV-vis titrations.  These (di)cationic 

hosts formed tight complexes with benzoate or acetate even in competitive aqueous 

DMSO solvent.  A bis(acylguanidinium) ferrocene dication achieved a Ka of ~ 106 M-1 to 

acetate in 9:1 DMSO:H2O and a Ka of 850 M-1 in neat D2O, which is one of the highest 

association constants known for a mono-carboxylate complex exploiting only 

electrostatic interactions in neat water.  

 Due to its large association constant to acetate in water, the bis(acylguanidinium) 

ferrocene dication was bound to various (di)carboxylates in water and their associations 

were determined through UV-vis titrations.  Association constant values greater than 104 

M-1 were determined for both phthalate and maleate carboxylates to the 

bis(acylguanidinium) ferrocene salt in pure water. Catch and release competitive binding 

experiments were done by NMR for the cation-carboxylate ion pair complexes with 

CB[7], showing dissociation of the ion pair complex upon addition of CB[7]. 

DFT computations of the binding enthalpy were in good agreement with the 

experimentally determined association constants, and the computations of the rigid 

carboxylates geometrically complementary to the dication agree well with the 

experimentally determined association constants. 
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INTRODUCTION FOR PART II 

“On the arid lands there will spring up industrial colonies without smoke and 

without smokestacks; forests of glass tubes will extend over the plains and glass 

buildings will rise everywhere; inside of these will take the photochemical processes that 

hitherto have been the guarded secret of the plants, but that will have been mastered by 

human industry... And if in a distant future the supply of coal becomes completely 

exhausted, civilization will not be checked by that, for life and civilization will continue 

as long as the sun shines!”1 

- Giacomo Luigi Ciamician 

PHOTOPHYSICAL PROCESSES  

Introduction.  Photochemistry plays an increasingly important role in bioorganic 

chemistry where there is much interest in the use of “caged” molecules, dyes, and 

sensors for fluorescent imaging.2  Examples of photochemistry of importance in other 

areas of chemistry include LEDs and luminescent materials, [2+2] and [2+4] 

cycloaddition reactions, and the characterization of reactive intermediates by using laser 

flash photolysis.2-5  

In order to understand photochemistry, one must first consider the fundamental 

photophysical processes.  The scope of this introduction will cover the basics of 

photochemical and photophysical processes, non-adiabatic photochemical reactions, and 

an overview of “caged” molecules. 

 The Jablonski diagram.  In photophysical processes, the chemical structure of 

the molecule is not changed in the end; however, in a photochemical process, the 
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interaction of light with matter leads to a change in the chemical structure.2, 6  A 

simplified version of a photophysical process is typically described by a Jablonski 

diagram (Figure 1), which is a modified version of the diagram that was proposed by 

Jablonski in 1933.2, 6, 7  In the Jablonski diagram, each surface is represented by a Morse 

potential, where the excited-state energy surfaces are placed higher on the diagram than 

the ground-state surfaces.2  After absorption of a photon (excitation), excess energy then 

gets released through the emission of light (fluorescence or phosphorescence), or through 

a radiationless decay pathway (internal conversion), which converts the energy into 

vibrational energy in the ground state (IVR in Figure 1).8 

 Absorption.  After excitation of a molecule in the ground state (S0), absorption 

(A in Figure 1) of a photon produces an excited-state singlet (S1).2, 6  In most cases, the 

ground states of organic molecules are closed-shell singlets, hence the exited state is also 

a singlet.2   

  The transition of S0 to S1 happens on the femtosecond timescale (10-16 - 10-14 s).  

Nuclear motions are much slower (10-13 – 10-12 s) than light absorption.2  This leads to 

the Franck-Condon Principle which essentially states that the electronic transitions are 

most favorable, or faster, when the excited-state geometry and the ground-state geometry 

of the nuclei are the same (FC in Figure 7 shows the Franck-Condon region).2, 6, 9, 10  

After absorption, excess energy can be released either in the form of light or through 

radiationless decay to bring the molecule back to its ground state. 
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Figure 1.  Jablonski diagram (A is absorption, F is fluorescence, P is phosphorescence, 

IVR is intramolecular vibrational redistribution, IC is internal conversion, and ISC is 

intersystem crossing) 

 

Radiationless decay. Intramolecular vibrational redistribution, internal 

conversion, and intersystem crossing are examples of radiationless decay that can occur 

when excess energy is released from an excited molecule.2, 8  In these processes, no 

photons are emitted during the relaxation of S1 back to S0.  Instead, the excess energy is 

given off as heat in the form of vibrational energy.2, 8  

Intramolecular vibrational redistribution, or relaxation, is the redistribution of the 

vibrational energy among the various vibrational modes of the molecule.6  An example 

of intramolecular vibrational redistribution is the process by which a vibrationally 
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excited state (Sn+1) relaxes down to the ground vibrational state of S1 (IVR in Figure 1).2, 

11  Once at the ground vibrational state of S1, internal conversion can happen, which is a 

spin-allowed process (IC in Figure 1).6  With internal conversion, there is no change in 

spin state when the molecule relaxes from S1 to S0.6 

Intersystem crossing (ISC in Figure 1) is a general term for the interconversion of 

spin states to go from S1 to a triplet excited state (T1).2  Note in Figure 1 that T1 is shown 

to be lower in energy than S1.  This is due to Hund’s rule, which results in a larger 

number of exchange interactions, making T1 lower in energy than S1.2, 6  When S1 is 

converted to T1, the change in the spin angular momentum is often coupled, or 

compensated, with a change in orbital angular momentum, as is the case with the ‘heavy 

atom effect.’2, 9, 10  However, when there are no heavy atoms present in the molecule, El-

Sayed’s rule takes over.2  This rule says that when two states being interconverted are 

both π, π* or n, π*, intersystem crossing is forbidden, or very slow, because spin angular 

momentum does not change.2, 9, 10  However, interconverting π, π* to n, π*, or vice versa, 

is allowed since there is a change in orbital angular momentum.2, 9, 10   

Fluorescence and phosphorescence.  When excess energy is released in the 

form of light when going from S1 to S0, it is called fluorescence (F in Figure 1).2, 6, 8  

Similar to fluorescence, phosphorescence also emits a photon when relaxing to S0 (P in 

Figure 1).  Unlike fluorescence, however, intersystem crossing is required prior to 

phosphorescence to convert S1 to T1, because phosphorescence is when an excited-state 

triplet converts to a ground state singlet and releases a photon.2  Because ISC is spin 

forbidden, the rate of phosphorescence can be on the order of seconds.2, 11  This means 
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that it is possible for a sample to phosphoresce even after the source of excitation has 

been removed.2   

While the Jablonski diagram in Figure 1 describes photophysical processes, 

which produce no net change in the material, it does not give any insight into 

photochemical processes.6, 12  It has been said that photochemistry is controlled by the 

competition of rates.2  The rate at which competing photochemical and photophysical 

processes occur will govern the observed outcome(s).13-15 

 

PHOTOCHEMICAL PROCESSES 

Adiabatic and hot-molecule reactions.  Adiabatic and hot-molecule reactions 

take place on only one surface.6, 9, 10, 16-18  In an adiabatic reaction, the conversion from 

reactant geometry to product geometry takes place on the excited-state surface (Figures 2 

and 7).9, 10, 13, 14, 17  Following the conversion to product geometry, the molecule relaxes 

back down to the ground state.2  During the relaxation back to the ground state, a photon 

can be emitted, resulting in fluorescence.2, 19  
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Figure 2.  Adiabatic photoreaction (R is reactant, P is product) 

 

 There are numerous examples of adiabatic reactions in literature, and many of 

them involve cis-to-trans isomerization or photo ring-opening.9, 10, 20  For example, 

Mazzucato and co-workers determined that styrylpyrene undergoes an adiabatic cis-to-

trans isomerization in nonpolar solvents from the singlet excited state S1 (Figure 3).20, 21  

 

Figure 3. Styrylpyrene adiabatic cis-to-trans isomerization 
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Later, Tokumaru’s group determined that including polar substituents on the styryl ring 

and using polar solvents led to cis-to-trans isomerization via a non-adiabatic route.20, 22 

(Non-adiabatic routes will be discussed in further detail later).  

 Photochemical studies of nephthvalene at 77 K by Turro et al revealed that it 

undergoes adiabatic photo ring-opening and efficiently generates a naphthalene triplet.23 

They also note that they observed phosphorescence, but no fluorescence as evidence for 

the observed excited-state spin-flip.23    

 

  

Figure 4.  Photo ring-opening of nephthvalene 

 

 The two examples above highlight adiabatic photochemical reactions that take 

place in the excited state.  There are also reactions that can occur in the ground state.  In 

hot ground-state reactions, excitation is followed by internal conversion back to the 

ground state.2, 9  However, before excess energy can be lost though vibrational energy, it 

is used to initiate a thermal reaction on the ground state, leading to a new product (Figure 

5).2, 6, 9 
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Figure 5.  Hot ground-state reaction (R is reactant, P is product) 

 

Non-adiabatic reactions.  When two potential energy surfaces are involved in a 

photochemical reaction, it is called a non-adiabatic or diabatic reaction.2, 9, 12  In a non-

adiabatic reaction, a molecule is excited from a stable structure on the ground state 

energy surface S0 to an unstable structure on the excited state energy surface S1.2  In the 

excited state, the molecule relaxes to a more stable structure on the excited-state energy 

surface, which is the minimum (or near minimum) on the S1 surface.2, 9  When the 

minimum of the S1 surface is close in energy to the maximum of the S0 surface, 

favorable photochemistry can occur.24  The small energy gap between these two surfaces 

allows for crossing from one surface to another, so the molecule is able to ‘hop’ from the 

minimum of the excited state S1 surface to the maximum of the ground state surface S0 

(CI in Figure 6).2, 12  
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Figure 6.  Non-adiabatic photoreaction (R is reactant, P is product, and CI is conical 

intersection) 

 

When the molecule ‘hops’ from the excited state to the ground state, either a new 

product (P in Figure 6) can form or the molecule is returned to its original reactant 

structure (R in Figure 6).25  If the molecule returns to the reactant structure, no 

photochemistry occurs, which is identical to internal conversion on the Jablonski 

diagram (Figure 1), however, if the molecule forms a new product, photochemistry 

occurs.  Due to the shape of where the excited state and the ground state surfaces 

approach one another, or become degenerate, this region is called either a funnel or a 

conical intersection (CI in Figure 6).6, 11, 14, 17, 26  The degeneracy between the potential 

energy surfaces leads to a break down of the Born-Oppenheimer approximation, 

S0

S1CI

R P



www.manaraa.com

 
 

96	
  

allowing for non-adiabatic processes to occur.9, 18, 27, 28  Figure 7 is a one-dimensional 

representation of the adiabatic and non-adiabatic reactions paths discussed thus far.   

 

Figure 7.  One-dimensional depiction of adiabatic and non-adiabatic reaction paths.  (R 

is reactants, P is products, CI is a conical intersection, TS is a transition state, and FC is 

the Franck-Condon region) 

 

Conical intersections and avoided crossings.  Conical intersections are crucial 

to photochemistry, since they provide an efficient route from the excited state to the 

ground state in polyatomic molecules (Figure 7).2, 24, 25, 29-31  The closer in energy the gap 

between the excited state surface and the ground state surface is, the faster and more 
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efficient this route will be.2, 6, 9, 14  If a molecule has a minimum on the excited-state 

surface near a maximum on the ground state surface, there will likely be a conical 

intersection.2, 32  It should be noted that diatomic molecules are unable to form conical 

intersections, but may experience avoided crossings.27  Because the number of 

vibrational degrees of freedom in a diatomic molecule is 1, there are not the two 

dimensions that are required to form the cone shape.27  Instead, diatomic molecule 

potential energy surfaces experience avoided crossings. 27, 33, 34  

 It was mentioned earlier that unsubstituted styrylpyrene undergoes an adiabatic 

cis-to-trans isomerization in nonpolar solvents, but that polar substituents on the styryl 

ring and polar solvents lead to cis-to-trans isomerization via a non-adiabatic route 

(Figure 8).20, 22  Tokumaru et al believe that the polar solvents and substituents change 

the mode of isomerization from an adiabatic isomerization (S1 Cis to S1 Trans) to a non-

adiabatic process (S1 Cis to S1 Perpendicular).22  The authors suggest that there is a 

perpendicular biradical-like geometry adopted in the excited state that is stabilized by the 

polar solvents.2, 22  This stabilization of the excited-state perpendicular geometry 

decreases the energy gap between S1 and S0 enough to allow for funneling back to the 

ground state (Figure 9).22  
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Figure 8. Styrylpyrene non-adiabatic cis-to-trans isomerization  

 

 

Figure 9. Styrylpyrene non-adiabatic cis-to-trans isomerization.  (Red surface is in polar 

solvent, green surface is in nonpolar solvent) 
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Sensitizers.  Adding a sensitizer to a reaction to generate an excited-state triplet 

biradical can lead to productive conical intersection formation.32  Biradical and biradical-

like structures are often unstable in S0, and these biradical-like molecules tend to have a 

low energy excited state.2, 35  Recall that Figure 8 showed an example of biradical-like 

behavior in the excited-state of the cis-to-trans isomerization of styrylpyrene in polar 

solvents, and Figure 9 showed the low energy excited-state of this biradical-like 

structure.22  Biradicals can either be spin-paired (S1) or spin unpaired (T1).2  We learned 

earlier that spin angular momentum must be conserved in ISC, which is why it is a spin-

forbidden process unless there is spin-orbit coupling (El-Sayed’s Rule).2, 36  One way to 

conserve spin and still generate a triplet is by adding a sensitizer (Figure 10).2   

 

Figure 10.  Sensitization  

 

Sensitizers can be used to generate a biradical triplet excited-state by conserving 

spin, therefore lowering the energy of the excited state.2, 33  In Figure 10, there is an 

energy transfer between 3D* and A which conserves spin while generating 3A*.2  

3D* + + 3A*DA
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Common sensitizers are those that have efficient ISC, like benzophenone, anthraquinone, 

and acetophenone.2 

 

Meta-effect. Aside from using a sensitizer, a meta-effect trend has been 

discovered (and disputed among scientists) to help determine whether or not a molecule 

is likely to have a stable excited state and therefore a favorable conical intersection.6, 37, 38  

In 1956 Havinga et al noticed that hydrolysis of ortho-, meta,- and para-nitrophenyl 

phosphates occurred at very different rates, with the meta-nitrophenyl phosphate having 

the fastest rate of hydrolysis when exposed to sunlight (Figure 11).37, 38 The study was 

repeated with ortho-, meta-, and para-nitrophenyl sulfates, with the same observed 

trend.37  

 

Figure 11. Ortho-, meta-, and para-nitrophenyl phosphates 

 

Havinga rationalized that the observed increased hydrolysis rate for the meta 

derivative was due to the excited-state resonance forms (Figure 12).37  These resonance 

forms showed that the carbon meta to the nitro group becomes more positive, and 

therefore more susceptible to nucleophilic attack in the excited state compared to the 

ground state.37  This increased reactivity of the meta isomer in the excited state is 

opposite to what is observed in the ground state.38   
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Figure 12.  Resonance structures of meta-nitrophenyl phosphate in its excited state 

 

 In 1963, Zimmerman’s group studied the meta-effect theoretically (LCAO MO 

calculations with neglect of orbital overlap) and experimentally on 3- and 4-

methoxybenzyl acetates, which supported the experimental observations by Havinga.39  

Thirty years later, however, Zimmerman’s widely accepted meta-effect theoretical 

studies were questioned by Pincock, who criticized that Zimmerman failed to look at 

homolytic cleavage to form radical pairs, but rather only looked at heterolytic cleavage 

ion pair formation.38-42  Furthermore, Pincock stated that ion pair formation through 

heterolytic cleavage was of minimal importance and that the major pathway was through 

radical pair formation through homolytic cleavage.5, 41  Regardless of the type of 

cleavage, there was no denying by Pincock that the benzyl derivatives had inverted 

substituent effects in the excited state.40   

In 1995, Zimmerman refuted the claims by Pincock and did more advanced 

theoretical calculations [CASSCF with (4,4) active space] to support his original claim.38, 

43  He concluded that primary excited state heterolysis was indeed preferred over 

homolysis for m-methoxy substituted benzylic acetates.38, 43  Many other groups have 

studied the meta-effect on different molecules,44, 45 and some have even used the meta- 

effect to help with the design of photocages.46-48   
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PHOTOCHEMISTRY OF CAGED COMPOUNDS 

 Photocages.  Numerous photosensitive moieties, or photoremovable protecting 

groups, have been synthesized that ‘cage’ or mask a key functional group of a target 

agent for biochemical or biological studies.49  There have been many uses of caged 

molecules in biology including caged ATP, DNA, nucleic acids, etc.50  The caging of 

nucleic acids, DNA, etc. temporarily renders the masked functionalities inactive, which 

allows biologists to study various processes such as translation, transcription, etc.50      

 Nitrobenzyl and coumarinyl analogues are commonly used caging groups with 

absorbances typically in the range of 250-330 nm and 325-400 nm respectively (Figure 

13A and B).50, 51  Wavelengths of up to 387 nm have been reported for some nitrobenzyl 

moeities.51  The recently studied fluorescein analogues have a maximum absorbance 

(λmax) of up to 520 nm in their enolate form, which makes them possible visible-light 

cleavable protecting groups (Figure 13C).52 However, undesirable protonation and 

tautomerization equilibria lead to messy UV-vis spectra. 52   

 

Figure 13.  Common photocage backbones 

  There are several drawbacks to using nitrobenzyl photocages, even though they 

are widely used.  It was already mentioned that their typical λmax  is in the UV-vis range, 
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which can lead to cell damage in biological systems.48  Electron donating R groups do 

tend to increase the λmax, but this effect is not great enough to make these cages visible-

light cleavable.50
  Incorporating an R’ group in the benzylic position leads to chirality of 

the photocage, which is a drawback if chiral molecules are to be protected (Figure 

13A).48  However, adding a methyl group to the benzylic position does increase quantum 

yield.48  Also, photolysis of nitrobenzyl cages forms potentially toxic byproducts that can 

absorb strongly, like nitrosobenzaldehyde (Figure 14, if R = H).48  

 Various coumarinyl cages have been developed that offer attractive alternatives 

to the nitrobenzyl cages (Figures 13 and 14).48  First generation alkoxycoumarinyl cages 

lacked water solubility, but the incorporation of carboxylates and an aniline moiety has 

helped overcome that barrier.48  

 

Figure 14.  Photo cleavage  

 

One drawback of coumarinyl cages is that it has a strong fluorescence emission, 

and a low uncaging efficiency.50  That means that the rate of fluorescence is much faster 

than the competing photochemical uncaging rate.2  The mechanism of photorelease is as 
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follows: after initial absorption, there is relaxation to the lowest π, π* singlet excited 

state.48  At this point, there can be radiationless decay, fluorescence, or productive 

heterolytic C-X bond cleavage (through a conical intersection).48  The coumarinylmethyl 

cation formed through heterolytic cleavage can then react with nucleophiles or solvent to 

form a new stable coumarinyl product (Figure 14).48 

  Recently, Goncalves and co-workers synthesized and studied wavelength-

selective cleavage of various photolabile protecting groups by attaching two families of 

photocages with distinct absorbances to alanine and investigating the photolysis rates in 

buffered aqueous methanol solutions.53  Each compound contained a nitrobenzyl-caged 

alanine that was masked with A, B, or C from Figure 15.53  The compounds were then 

irradiated with either 254 nm light to cleave the nitrobenzyl cage,  350 nm light to cleave 

A or B, or 419 nm light to cleave C.53  They found that with 350 nm light, cages A and B 

cleaved within 18 and 60 minutes respectively.53  With 419 nm light, cage C cleaved 

within 17 minutes.53  At both 350 nm and 419 nm, they found that the nitrobenzyl group 

did photolyze approximately ten percent.53  Unfortunately, they found that with the 254 

nm light, the nitrobenzyl group took 150 minutes to cleave and cages A, B, and C  

unexpectedly underwent photolysis at times of 25, 48, and 12 minutes respectively.  

These studies showed that Goncalves et al were able to synthesize wavelength-selective 

conjugates, but that a specific irradiation sequence was required for success.53  
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Figure 15. Wavelength-selective cleavage 

 

 From the above examples, it is clear that photocages play an important role in 

biology and chemistry, but it is difficult to rationally design cages that will have an 

efficient uncaging pathway versus fluorescence pathway.  Currently, the structure- 

reactivity relationship for these photoremovable protecting groups, or photocages, have 

been discovered serendipitously or through empirical investigations, and the lack of a 

model for these structure-reactivity relationships hinders the rational design of new 

structures that undergo photoheterolysis. 
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CHAPTER 3 
 

STUDIES TOWARDS UNDERSTANDING PHOTOCHEMICAL HETEROLYSIS 

FOR DELIVERING BIOMOLECULES 

Taken in part from: Buck, A. T.; Beck, C. L.; Winter, A. H., J. Am. Chem. Soc., 2014. 

In review 

 

INTRODUCTION   

 The structures of organic molecules that undergo photoheterolysis to 

generate carbenium ion pairs defy the chemical intuition developed for thermal 

heterolysis.  Known photoheterolysis reactions frequently generate classic examples of 

unstable carbenium ions, such as pi-donor unconjugated ions,1, 2 antiaromatic ions,3-5 

and dicoordinated aryl/vinyl cations.6-8  Few examples report efficient heterolysis to 

generate stabilized cations.  To date, no model connects structure to reactivity for these 

photoreactions, and many of the known photoremovable protecting groups,9 or 

photocages, have been discovered serendipitously or through empirical investigations.  

The lack of a structure-reactivity relationship for photoheterolysis reactions has 

hindered the rational design of new structures that undergo photoheterolysis, which are 

reactions of applied importance in materials,10 synthetic,8, 11 medicinal,12 and biological 

chemistry.13  

Here, we attempt to understand why successful photochemical heterolysis 

reactions of C-LG bonds frequently generate unstabilized carbocations, which is the 

opposite of structural preferences for thermal heterolysis reactions.  We were inspired 

by Zimmerman’s,14, 15 Turro’s,16,17 and Michl’s18 early investigations on the importance 
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of conical intersections in photoreactions, Zimmerman’s later investigations into the 

role of the conical intersection for explaining the ‘meta-effect,’19 and more recent 

computational advances in searching for conical intersections in complex chemical 

systems.20-24 Therefore, we investigated the hypothesis that these surprising 

photoreactivities might be linked to conical intersection control,24 which is the concept 

that an increasing number of photoreactions are thought to proceed via radiationless, 

non-adiabatic mechanisms, channeling from the excited-state surface to the ground-

state surface via a conical intersection.25, 26  As a result, the role and importance of the 

conical intersection for non-adiabatic photoreactions has been likened to that of the 

transition state for thermal reactions in terms of governing the reaction.27  For example, 

the propensity of many photoreactions to generate strained molecules has been 

attributed in part to conical intersection control,17 wherein highly strained 

photoproducts are located at energetic spikes on the ground-state surfaces leading to 

nearby conical intersections with the excited state, providing a productive channel for 

the photoreaction to proceed from the excited-state to the strained ground-state 

minimum.   

 We hypothesized that generation of certain unstabilized carbenium ions, while 

disfavored thermally, might be favored photochemically by elevating the ground-state 

heterolysis reaction coordinate surface at the ion pair geometry.  In combination with a 

stabilized excited-state surface at this geometry, a productive conical intersection may 

result that provides a channel for the photoreaction to proceed from the excited-state to 

the ground-state ion pair, making the photoheterolysis reaction pathway for these 
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structures competitive with unproductive photophysical processes (internal conversion, 

luminescence, etc).  In contrast, heterolysis reactions that generate stable cations 

necessarily have lowered ground-state surfaces along the heterolysis reaction 

coordinate, making it less likely for these structures to have a nearby productive conical 

intersection near the ion pair (Figure 1).  

 

  

Figure 1.  Schematic of hypothesis that a destabilized ground state and a stabilized 

excited state can lead to a favorable, nearby conical intersection (A), whereas it is 

unlikely that a stabilized ground state will have a nearby conical intersection (B).  The 

black line indicates how the S0-S1 excited-state vertical energy gap for carbocation may 

act as a convenient, easy-to-calculate probe for a nearby conical intersection. 

 

 

A B
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To test the hypothesis that these unstabilized cation structures have favorable, 

nearby conical intersections, we performed minimum energy crossing searches (conical 

intersections) of representative cations in combination with an excited-state vertical 

energy gap probe approach that allowed us to expand our investigation to a larger 

number of systems.  We find that stable cations, such as those with conjugated pi-

donors or aromatic cations, generally have high-energy conical intersections relative to 

their excited-state minima.  In contrast, certain unstabilized or destabilized cations (e.g. 

non-conjugated donor-substituted cations, antiaromatic cations, substituted aryl cations, 

etc), have stabilized excited states and low-energy, nearby conical intersections (Figure 

2).  Our results suggest that the frequent substituent orthogonality between thermal and 

non-adiabatic photochemical heterolysis reactions may arise from conical intersection 

control. 
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Figure 2. Calculated points on the potential energy surfaces of the cations studied by 

CASSCF with full pi active space.  a, b) 3D graphs of calculated points on S0 and S1 

surface with linear path to the nearest conical intersection.  c - l) graphs of the energies 

of the potential energy surfaces relative to respective ground states. c) allyl 1, d) 1-

aminoallyl 2, e) 2-aminoallyl 3, f) o-aminobenzyl 8, g) m-aminobenzyl 9, h) p-

aminobenzyl 10, i) indenium 14, j) pyrylium 15, k) p-aminophenyl 16, and l) 

aminocoumarin analog 20.  Red bond in the inset shows the bond chosen for the 

geometrical coordinate. 
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RESULTS AND DISCUSSION 

Computational Methods. Minimum energy crossings (conical intersections) 

were computed using complete pi active spaces for the cations in the gas phase 

employing the state-averaged CASSCF procedure implemented in GAMESS,28 using 

the 6-31G(d) basis set (giving equal weighting to ground state and excited state).  For 

example, the m-aminobenzyl cation was computed using a (8,8) active space, consisting 

of eight π electrons in the eight π orbitals.  To ascertain the energy gaps between the 

ground-state and excited-state surface, we used time-dependent density functional 

theory (TD-B3LYP/6-311+G(2d,p) at the DFT-optimized geometries (RB3LYP/6-

31G(d)) using Gaussian 09.29  TD-DFT is known to give reasonable results for excited 

state energy gaps,30, 31 provided the ground state can be described predominantly by a 

single reference wavefunction.  By computing the conical intersection and excited-state 

energies of the cation (and neglecting the leaving group) we assume that the 

photochemistry occurs to the greatest extent on the part of the molecule that becomes 

the cation moiety and not the leaving group.  This approach was employed by 

Zimmerman for studying the meta-effect14, 15 and appears to be a reasonable 

assumption, since these excited-state substituent effects appear to be largely 

independent of the leaving group, experimentally.  For example, known photocage 

structures undergo efficient photoheterolysis with a variety of different leaving groups, 

suggesting that the photochemistry is largely directed by the structure of the cation than 

by the leaving group.  Typical leaving groups include phosphates (e.g. ATP),32 

carbamates,33 carbonates,34 carboxylates,35 and even ‘bad’ leaving groups such as -OH. 
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Additionally, by neglecting the leaving group from our calculations we assume that the 

relative cation ground-state and excited-state energies are not, to a major degree, 

influenced by ion pairing. 

Computational Results. Carbocations that were included in this computational 

study are shown in Chart 1. Some of these carbocations result from photoheterolysis 

reactions of known substrates (structures 7-9, 12-14, 16, 21, 22, 26-28, 31-35),36 or are 

simplified structures of known substrates for computational convenience (e.g. cation 15 

is a chemically simplified version of the known substrate 21, while 20 is a chemically 

simplified version of 26).  Other cations included in our study are those that result from 

substrates that are emperically known to not undergo efficient photoheterolysis (e.g. 10, 

30).  The remaining cations (1-6, 11, 17-19, 23-25, 36-39) were investigated to 

understand the effect of chemical structure on the ground-state—excited-state vertical 

energy gap, which we propose may be useful as a simple computational probe for the 

presence of a nearby conical intersection.  Photochemical substrates that do not involve 

direct heterolytic scission from the excited state, such as the o-nitroaromatic caging 

systems, are not relevant to the present discussion and were omitted from this study.   
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Chart 1.  Structures of cations studied.  Structures studied by both TD-DFT and 

CASSCF conical intersection searches are shown within the box while structures 

studied by TD-DFT alone are shown outside of the box. 
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 Many of the known successful photoheterolysis reactions that generate 

carbenium ions have cation structures that fall into three main classes: 1) pi-donor 

unconjugated ‘benzylic’ cations (e.g. 3,5-dimethoxybenzyl cation37 13, 9-

aminocoumaryl cation9, 38, 39 26); 2) Cations that are formally antiaromatic following 

Hückel’s Rule (e.g. fluorenyl40 28, indenyl cation41 14); and 3) Dicoordinated 

carbocations (e.g. donor-substituted vinyl/aryl cations6-8 16).  The unusual nature of 

these substrates’ favor for photoheterolysis has not gone unnoticed.  Pincock and 

Young41 noted that for photoheterolysis of the indenyl cation that “efficient generation 

by this photochemical solvolysis is in sharp contrast to the very low reactivity of related 

ground-state substrates.”  The original report of the “meta-effect” by Havinga42 noted 

that rapid heterolysis of meta-substituted systems “defies a chemical explanation.”  In 

contrast, the scarcity of reports of photoheterolysis in substrates that generate stabilized 

cations is intriguing.  However, two notable cases have been reported as counterpoints 

to successful photoheterolysis reactions.  The precursor to the aromatic ion 5 was 

reported to not undergo photoheterolysis while the substrate leading to antiaromatic 

indenyl cation does undergo facile photoheterolysis;41 additionally, para-donor-

substituted benzylic systems are reported to not undergo photoheterolysis, in contrast to 

the meta-substitued derivatives,19 giving rise to the so-called ‘meta-effect.’  However, 

the observation that photochemical heterolyses generally appear to favor the formation 

of classic examples of unstable carbocations, while few report the formation of 

stabilized cations, has to our knowledge not been rigorously addressed. 
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Conical intersection mimimum energy crossing searches for cations 1-3, 8-

10, 14-16, 20.  To test the hypothesis that photoheterolysis reactions generate 

carbocations with favorable conical intersections, we performed conical intersection 

searches on representative cations that fall within the three major classes of ion favored 

from photoheterolysis mentioned above as well as the counterpoint substrates that are 

known to not undergo efficient photoheterolysis.  We anticipated that cations resulting 

from photochemically-favored substrates would have low-energy nearby conical 

intersections whereas cations resulting from substrates lacking a favored 

photoheterolysis pathway would have higher energy unfavorable conical intersections.  

Cations 8-10 were chosen for study since ortho and meta donor-substituted substrates 

favor photoheterolysis, whereas a para donor substituent does not favor 

photoheterolysis.19, 43  Cation 20 was chosen as a simplified model system of the cation 

resulting from the popular 9-aminocoumaryl photocage 26, which preserves the 

unconjugated nature and connectivity of the amine donor substituent but eliminates the 

benzene ring to yield a system for which a conical intersection search is 

computationally tractable.  Cation 14 is a representative system of the formally 

antiaromatic cations that are favored from photoheterolysis; pyrilium cation 15 is a 

simplified version of a known substrate that generates the aromatic ion 21 via an 

adiabatic photochemical mechanism.44, 45  Cation 16 is chosen as representative of the 

dicoordinate carbocations often favored from photoheterolysis.  Finally, systems 1-3 

were investigated as possible simple new systems that may undergo photoheterolysis.    

For each of the carbocations, we computed the CASSCF optimized geometries 
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and energies for the ground-state minimum, the first singlet excited-state minimum, and 

the conical intersection between the ground state and the singlet excited state.  These 

energies are plotted versus a geometrical coordinate in Figure 2.  As can be seen from 

Figure 2, cations deriving from photochemically favored substrates (9, 14, 16, 20) are 

found to have low-energy conical intersections relative to the excited-state minimum.   

Additionally, cations resulting from photochemically favored substrates have 

small structural deviations between the excited-state minimum and the conical 

intersection structures, whereas those unfavored systems with high-energy conical 

intersections have large structural distortions.  There are also large structural distortions 

between the ground-state minimum and the unfavored high-energy conical intersection 

structures (Figure 3).  Note that in two cases (16, 20) we were unable to locate an 

excited-state minima, suggesting that there is a direct channel from the Franck-Condon 

excited state to the conical intersection bypassing a minimum.   

These results support the idea that conical intersection control is an important 

feature of these photoheterolysis reactions.  Those unstabilized carbocations that are 

favored from photoheterolysis (or their model systems) have low-energy, nearby 

conical intersections to the excited-state minimum.  In contrast, the stabilized cations 

have high-energy, distant conical intersections relative to the excited-state minima. 
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Figure 3.  Ground-state minimum and conical intersection structures overlayed.  When 

ΔECI-GS is large (high-energy conical intersection), there are large structural distortions, 

but when ΔECI-GS is small, there are small structural distortions. 

  

Stabilized-cation excited states.  Conical intersections occur at biradical 

geometries.46, 47  Thus, assuming no major structural deviations in the excited state, 

cations having favorable nearby conical intersections should have low-energy ion 

diradical forms.  For those species belonging to class 1 described on page 118 (donor-

unconjugated cations), the excited states resemble stabilized non-Kekule diradical ions 

(Figure 5).  These diradical forms can be envisioned as deriving from promotion of a π 
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electron on the unconjugated donor substituent to the formally empty cation π* orbital 

to provide an ion diradical connected by non-disjoint singly occupied molecular orbitals 

(SOMOs).  This view is supported by our time-dependent density functional theory 

(TD-DFT) computed difference density plots between the ground state and the excited 

state (Figure 4).  

 

Figure 4. TD-DFT density difference plots between the ground state and the excited 

state.  Electrons travel from lavender in the ground state to aqua in the excited state.   
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For example, the meta-donor substituted systems have an excited singlet ion 

diradical form that is electronically analogous to the classic meta xylylene diradical,48 

with a radical at the “carbenium center” and a cation radical donor substituent.  There 

are numerous examples of cations that fall within this type (9, 12, 13, 17, 18, 19, 22, 23, 

24, 25, 26, 27, 31).  Thus, while the donor group does not act to stabilize the ground-

state cation via resonance, it leads to stabilized singlet diradical excited states.  For ions 

belonging to class 2 (antiaromatic cations), the excited state resembles a π,π* cation 

diradical.  These antiaromatic cations are classic examples of cations with low-energy 

excited states, and Wan has suggested the excited state of these antiaromatic ions may 

have aromatic character.5  Examples falling into class 3 (dicoordinated cations, such as 

aryl/vinyl cations) have excited states resembling open-shell cationic carbenes.  These 

representations can be seen from inspection of the SOMOs and are diagrammed in 

Figure 5. 
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Figure 5.  Representations of the different classes of excited-state cations discussed 

(ground-state cation shown at left, excited state Lewis representation at right).  a) 

donor-unconjugated cations and stabilized non-Kekule ion diradical form (right), b) 

formally antiaromatic cations, and c) dicoordinated cations. 

 

Excited-state energy gaps as a simple probe for nearby conical 

intersections.  Unfortunately, the practical difficulty and computational expense 

associated with computing conical intersections makes a complete investigation of all 

systems unfeasible.  Since we are interested in a broad investigation, we tested the 

possibility of using the ground-state—excited-state vertical energy gap of the cation to 

probe for a nearby conical intersection.  We considered that low vertical energy gaps 

between the cation ground state to the first excited state, which are easily computable 

using TD-DFT, would implicate a nearby conical intersection, assuming that there are 

no major structural deformations in the cation excited-state structure (Figure 1).  
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Figure 6. A plot of the difference in conical intersection energy and S1 minimum 

energy vs. TD-DFT computed S0-S1 Franck-Condon vertical energy gap for the 

compounds studied.  Red points show compounds that are experimentally found to be 

photoactive or have a nearby conical intersection.  Cation 15 is a model system for 

cation 21 that results from photoheterolysis via an adiabatic mechanism, indicating no 

nearby conical intersections.  
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Figure 7. An energy level diagram comparing the Franck-Condon vertical energy gap 

(TD-B3LYP/6-311+G(2d,p)) of all of the cations studied.  Compounds in the green 

section encompass most of the cations from the photoactive species.  The maximum of 

the green section is where the inflection point is found in Figure 6 for the onset of a 

significant barrier between the S1 minimum and the conical intersection.  Cations in the 
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red sections would be expected not to have low-energy conical intersections.  Inset: 

Hypothesis that a small vertical energy gap suggests a nearby conical intersection. 

 

A correlation between the energy of the conical intersections of the cations we 

computed and their excited-state energy gap computed by TD-DFT appears to provide 

some evidence to support the validity of this approach (Figure 6), with an apparent 

inflection point at approximately 60 kcal/mol, where significant barriers between the 

ground-state minimum and the conical intersection appear.  Additionally, the Franck-

Condon vertical energy gaps of the unstabilized carbocations that are favored from 

photoheterolysis are generally lower than for stabilized carbocations (Figure 7).  

Cations 1 and 36-39 are included to show the vertical gap of “normal” conjugated 

cations, indicating that these structures do not have a favorable conical intersection in 

the default case (Figure 7). 

Discussion. The preponderance of successful photochemical substrates leading 

to cations with excited states resembling non-Kekule ion diradicals led us to consider 

related structures that would have lowered-energy excited states.  The simplest non-

Kekule diradical is the trimethylene methane diradical.  The analogous cation of this 

structure bearing a donor substituent, 2-aminoallyl cation 3, would be expected to have 

a low-energy excited state, while the conjugated 1-aminoallyl cation 2 would not be 

expected to have this lowered energy excited state.  Indeed, the energy from S0 

minimum to S1 minimum for 2 is 88.2 kcal/mol while the same gap for 3 is 43.8 

kcal/mol (Figure 2).  Additionally, the energy gap between the conical intersection and 
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the S1 minimums for 2 and 3 are 100.7 kcal/mol and 3.2 kcal/mol, respectively, 

supporting the idea that the 2-aminoallyl cation may have access to a productive conical 

intersection during photoheterolysis, in contrast to the 1-aminoallyl system.  These 

systems would represent a simple but spectacular demonstration of the substituent 

orthogonality between thermal and photochemical substrate preferences for heterolysis. 

 It should be noted that alternative mechanisms are available for photoheterolysis 

other than direct non-adiabatic heterolysis via a conical intersection located on the 

cation.  For instance, the aromatic ion 21, for which our calculations on the model 

system 15 indicates has a high-energy, unfavorable conical intersection, is generated 

efficiently from photolysis, but arises via a less-common adiabatic mechanism, with 

formation of the singly-excited carbocation that relaxes by fluorescence to yield the 

ground-state ion pair.  Additionally, by neglecting the leaving group, we are also not 

considering the possibility of a conical intersection between the diradical and 

zwitterionic forms (e.g. R• LG• and R+ LG-), so a mechanism involving homolytic 

scission followed by electron transfer may be available.  This mechanism may give rise 

to successful photoheterolysis pathways in systems yielding cations that do not have a 

conical intersection located on the cation moiety (e.g. possibly ortho-substituted 

benzylic systems). Generation of highly stabilized carbocations may also arise via hot 

ground-state photoreactions, although these mechanisms are thought to be rare.  Thus, 

the cation conical intersection (or the vertical energy gap probe) may be more useful in 

suggesting new systems that are likely to have a productive conical intersection along 

the heterolysis coordinate than in suggesting systems that will be photostable.  
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Additionally, this hypothesis provides an explanation of why 'bad' leaving groups in the 

ground state, such as hydroxides or alkoxides, can be 'good' leaving groups in the 

excited state, because making a high-energy ion pair would elevate the ground-state 

surface.49 

Photocage studies.  Compounds 31-35 have been shown in literature to 

function as photolabile protecting groups (mentioned on page 104 in the Introduction 

section).50, 51  The computed vertical energy gap for compounds 31-35 was less than 50 

kcal/mol (vide supra), indicating the possibility of having a nearby, low-energy conical 

intersection for these compounds.  We were interested in comparing the vertical energy 

gaps of compounds 31-35 to those of BODIPY cations, which are expected to also find 

function as photolabile protecting groups (Figure 8).  The nitrogens in red are pi-donor 

unconjugated to the cation, leading to the lone pair of electrons’ inability to stabilize the 

ground-state cation via resonance, resulting in an unstabilized ground state. It is also 

expected that the BODIPY compounds studied will have stabilized singlet diradical 

excited states represented by Figure 5a. 
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Chart 2.  Structures of BODIPY cations studied by TD-DFT computations. 

 

DFT computations (B3LYP/6-31G(d)) were used to compute geometries of 

cations 40-48.  An effort was made to find the lowest-energy rotamer for compounds 

41, 45, 46, and 48.  Time-dependent excited-state calculations (TD-B3LYP/6-

311+G(2d,p)) were carried out on all of the BODIPY cations in Chart 2.  
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Figure 8. An energy level diagram comparing the Franck-Condon vertical energy gap 

(TD-B3LYP/6-311+G(2d,p)) of all of the BODIPY cations studied (Black) compared 

to photolabile protecting groups reported in literature (Red).50, 51  All compounds lie 

within the green section, indicating the possibility of having a low-energy, nearby 

conical intersection.  

  

EXPERIMENTAL 

 As can be seen in Figure 8, all of the BODIPY cations studied computationally 

have a vertical energy gap of less than 25 kcal/mol, which indicates the possibility of 

having a low-energy nearby, conical intersection.  We were interested in studying this 

experimentally, so BODIPY compounds 40a,52 41a,52 and 42a53 were synthesized 
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according to known literature procedures (Chart 3).  Their spectra matched the reported 

literature values.  A small amount of authentic sample of 40a was graciously provided 

by Mark E. Thompson’s group from USC, Los Angeles.  

 

Chart 3.  BODIPY compounds studied experimentally 

 

Photolysis studies.  Compounds 40a, 41a, and 42a all absorb in the visible 

region with λmax > 500 nm.  Each sample was dissolved in deuterated methanol, placed 

in an NMR tube, and irradiated with a xenon lamp for varying time intervals.  In all 

samples, heterolysis of the acetate leaving group followed by solvolysis by the 

deuterated methanol leads to an increase of an acetic acid peak by NMR (Scheme 1 and 

Figures 9-11).  

 

Scheme 1.  General scheme for heterolysis followed by solvolysis for all of the dyes 

studied.  It was expected that the growth of the leaving group (acetic acid) would be 

observed by NMR. 
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Figure 9.  Photolysis of compound 40a in CD3OD.  1H stacked spectra of compound 

40a in CD3OD-d4 referenced to the water peak (4.87 ppm).  The water and methanol 

peaks have been removed for clarity.  Acetic acid (star) begins to appear within ten 

minutes of irradiation with a xenon lamp (1.99 ppm).  Complete heterolysis is seen by 4 

hours of irradiation time. 
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Figure 10.  Photolysis of compound 41a in CD3OD.  1H stacked spectra of compound 

41a in CD3OD-d4 referenced to the water peak (4.87 ppm).  The water and methanol 

peaks have been removed for clarity.  Acetic acid (star) begins to appear within thirty 

minutes of irradiation with a xenon lamp (1.99 ppm).  Complete heterolysis is seen 

within one hour of irradiation time.   
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Figure 11.  Photolysis of compound 42a in CD3OD.  1H stacked spectra of compound 

42a in CD3OD-d4 referenced to the water peak (4.87 ppm).  The water and methanol 

peaks have been removed for clarity.  Acetic acid (star) begins to appear within ten 

minutes of irradiation with a xenon lamp (1.99 ppm).  Almost complete heterolysis is 

seen at 4.5 hours of irradiation time. 
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CONCLUSION  

 In conclusion, we have shown that carbocations favored from photoheterolysis 

tend to have nearby, low-energy conical intersections while stable carbocations from 

thermal heterolysis tend to have high-energy, distant conical intersections.  These 

findings lend support to the idea that conical intersection control leads to the frequent 

inverted substrate preferences between non-adiabatic photoheterolysis and thermal 

heterolysis.  The idea that these photoheterolysis reactions may be governed by conical 

intersection control could facilitate the design of new photocages with improved light 

absorbing properties by searching for substrates leading to carbocations with a 

favorable built-in conical intersection.  We have shown three photocages that undergo 

heterolysis by visible light photolysis.  Time-dependent excited-state vertical energy 

gap computations of the cations generated through heterolysis show that these 

photocages have the potential for low-lying, nearby conical intersections.  These studies 

open up the possibility for designing visible-light cleavable photocages that have the 

potential for numerous applications including drug delivery and biological imaging.   
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